241 research outputs found
Nonlinear hyperbolic systems: Non-degenerate flux, inner speed variation, and graph solutions
We study the Cauchy problem for general, nonlinear, strictly hyperbolic
systems of partial differential equations in one space variable. First, we
re-visit the construction of the solution to the Riemann problem and introduce
the notion of a nondegenerate (ND) system. This is the optimal condition
guaranteeing, as we show it, that the Riemann problem can be solved with
finitely many waves, only; we establish that the ND condition is generic in the
sense of Baire (for the Whitney topology), so that any system can be approached
by a ND system. Second, we introduce the concept of inner speed variation and
we derive new interaction estimates on wave speeds. Third, we design a wave
front tracking scheme and establish its strong convergence to the entropy
solution of the Cauchy problem; this provides a new existence proof as well as
an approximation algorithm. As an application, we investigate the
time-regularity of the graph solutions introduced by the second author,
and propose a geometric version of our scheme; in turn, the spatial component
of a graph solution can be chosen to be continuous in both time and space,
while its component is continuous in space and has bounded variation in
time.Comment: 74 page
Neutrino oscillation constraints on neutrinoless double beta decay
We have studied the constraints imposed by the results of neutrino
oscillation experiments on the effective Majorana mass || that characterizes
the contribution of Majorana neutrino masses to the matrix element of
neutrinoless double-beta decay. We have shown that in a general scheme with
three Majorana neutrinos and a hierarchy of neutrino masses (which can be
explained by the see-saw mechanism), the results of neutrino oscillation
experiments imply rather strong constraints on the parameter ||. From the
results of the first reactor long-baseline experiment CHOOZ and the Bugey
experiment it follows that || < 3x10^{-2} eV if the largest mass-squared
difference is smaller than 2 eV^2. Hence, we conclude that the observation of
neutrinoless double-beta decay with a probability that corresponds to || >
10^{-1} eV would be a signal for a non-hierarchical neutrino mass spectrum
and/or non-standard mechanisms of lepton number violation.Comment: 20 pages, including 4 figure
Status of a Supersymmetric Flavour Violating Solution to the Solar Neutrino Puzzle with Three Generations
We present a general study of a three neutrino flavour transition model based
on the supersymmetric interactions which violate R-parity. These interactions
induce flavour violating scattering reactions between solar matter and
neutrinos. The model does not contain any vacuum mass or mixing angle for the
first generation neutrino. Instead, the effective mixing in the first
generation is induced via the new interactions. The model provides a natural
interpretation of the atmospheric neutrino anomaly, and is consistent with
reactor experiments. We determine all R-parity violating couplings which can
contribute to the effective neutrino oscillations, and summarize the present
laboratory bounds. Independent of the specific nature of the (supersymmetric)
flavour violating model, the experimental data on the solar neutrino rates and
the recoil electron energy spectrum are inconsistent with the theoretical
predictions. The confidence level of the -analysis ranges between and . The incompatibility, is due to the new SNO
results, and excludes the present model. We conclude that a non-vanishing
vacuum mixing angle for the first generation neutrino is necessary in our
model. We expect this also to apply to the solutions based on other flavour
violating interactions having constraints of the same order of magnitude.Comment: 17 pages, Latex fil
Statistical Analysis of Different Muon-antineutrino->Electron-antineutrino Searches
A combined statistical analysis of the experimental results of the LSND and
KARMEN \numubnueb oscillation search is presented. LSND has evidence for
neutrino oscillations that is not confirmed by the KARMEN experiment. This
joint analysis is based on the final likelihood results for both data sets. A
frequentist approach is applied to deduce confidence regions. At a combined
confidence level of 36%, there is no area of oscillation parameters compatible
with both experiments. For the complementary confidence of 1-0.36=64%, there
are two well defined regions of oscillation parameters (sin^2(2th),Dm^2)
compatible with both experiments.Comment: 25 pages, including 10 figures, submitted to Phys. Rev.
Additional Nucleon Current Contributions to Neutrinoless Double Beta Decay
We have examined the importance of momentum dependent induced nucleon
currents such as weak-magnetism and pseudoscalar couplings to the amplitude of
neutrinoless double beta decay in the mechanisms of light and heavy Majorana
neutrino as well as in that of Majoron emission. Such effects are expected to
occur in all nuclear models in the direction of reducing the light neutrino
matrix elements by about 30%. To test this we have performed a calculation of
the nuclear matrix elements of the experimentally interesting nuclei A = 76,
82, 96, 100, 116, 128, 130, 136 and 150 within the pn-RQRPA. We have found that
indeed such corrections vary somewhat from nucleus to nucleus, but in all cases
they are greater than 25 percent. In the case of heavy neutrino the effect is
much larger (a factor of 3). Combining out results with the best presently
available experimental limits on the half-life of the neutrinoless double beta
decay we have extracted new limits on the effective neutrino mass (light and
heavy) and the effective Majoron coupling constant.Comment: 31 pages, RevTex, 3 Postscript figures, submitted to Phys. Rev.
Electronic transport in EuB
EuB is a magnetic semiconductor in which defects introduce charge
carriers into the conduction band with the Fermi energy varying with
temperature and magnetic field. We present experimental and theoretical work on
the electronic magnetotransport in single-crystalline EuB. Magnetization,
magnetoresistance and Hall effect data were recorded at temperatures between 2
and 300 K and in magnetic fields up to 5.5 T. The negative magnetoresistance is
well reproduced by a model in which the spin disorder scattering is reduced by
the applied magnetic field. The Hall effect can be separated into an ordinary
and an anomalous part. At 20 K the latter accounts for half of the observed
Hall voltage, and its importance decreases rapidly with increasing temperature.
As for Gd and its compounds, where the rare-earth ion adopts the same Hund's
rule ground state as Eu in EuB, the standard antisymmetric
scattering mechanisms underestimate the of this contribution by several
orders of magnitude, while reproducing its almost perfectly. Well below
the bulk ferromagnetic ordering at = 12.5 K, a two-band model
successfully describes the magnetotransport. Our description is consistent with
published de Haas van Alphen, optical reflectivity, angular-resolved
photoemission, and soft X-ray emission as well as absorption data, but requires
a new interpretation for the gap feature deduced from the latter two
experiments.Comment: 35 pages, 12 figures, submitted to PR
Leptogenesis and low energy observables in left-right symmetric models
In the context of left-right symmetric models we study the connection of
leptogenesis and low energy parameters such as neutrinoless double beta decay
and leptonic CP violation. Upon imposition of a unitarity constraint, the
neutrino parameters are significantly restricted and the Majorana phases are
determined within a narrow range, depending on the kind of solar solution. One
of the Majorana phases gets determined to a good accuracy and thereby the
second phase can be probed from the results of neutrinoless double beta decay
experiments. We examine the contributions of the solar and atmospheric mass
squared differences to the asymmetry and find that in general the solar scale
dominates. In order to let the atmospheric scale dominate, some finetuning
between one of the Majorana phases and the Dirac CP phase is required. In this
case, one of the Majorana phases is determined by the amount of CP violation in
oscillation experiments.Comment: 18 pages, 6 figures. Matches version to appear in PR
The Majorana neutrino masses, neutrinoless double beta decay and nuclear matrix elements
The effective Majorana neutrino mass is evaluated by using the latest results
of neutrino oscillation experiments. The problems of the neutrino mass
spectrum,absolute mass scale of neutrinos and the effect of CP phases are
addressed. A connection to the next generation of the neutrinoless double beta
decay (0nbb-decay) experiments is discussed. The calculations are performed for
76Ge, 100Mo, 136Xe and 130Te by using the advantage of recently evaluated
nuclear matrix elements with significantly reduced theoretical uncertainty. An
importance of observation of the 0nbb-decay of several nuclei is stressed.Comment: 29 pages, 5 figures, EXO (10 t) experiment considere
Constraining neutrino oscillation parameters with current solar and atmospheric data
We analyze the impact of recent solar, atmospheric and reactor data in the
determination of the neutrino oscillation parameters, taking into account that
both the solar nu_e and the atmospheric nu_mu may convert to a mixture of
active and sterile neutrinos. We use the most recent global solar neutrino
data, including the 1496-day Super-K neutrino data sample, and we investigate
in detail the impact of the SNO neutral current, spectral and day/night data by
performing also an analysis using only the charged current rate from SNO. The
implications of the first 145.1 days of KamLAND data on the determination of
the solar neutrino parameters are also discussed in detail. We confirm the
clear preference of solar+reactor data for the pure active LMA-MSW solution of
the solar neutrino problem, and obtain that the LOW, VAC, SMA and Just-So^2
solutions are disfavored with a Delta_chi^2 = 22, 22, 36, 44, respectively.
Furthermore, we find that the global solar data constrains the admixture of a
sterile neutrino to be less than 43% at 99% CL. By performing an improved fit
of the atmospheric data, we also update the corresponding regions of
oscillation parameters. We find that the recent atmospheric Super-K (1489-day)
and MACRO data have a strong impact on constraining a sterile component in
atmospheric oscillations: if the nu_mu is restricted to the atmospheric mass
states only a sterile admixture of 16% is allowed at 99% CL, while a bound of
35% is obtained in the unconstrained case. Pure sterile oscillations are
disfavored with a Delta_chi^2 = 34.6 compared to the pure active case.Comment: 28 pages, LaTeX file using RevTEX4, 12 figures and 3 tables included.
Improved version including the new KamLAND dat
Probing neutrino non-standard interactions with atmospheric neutrino data
We have reconsidered the atmospheric neutrino anomaly in light of the laetst
data from Super-Kamiokande contained events and from Super-Kamiokande and MACRO
up-going muons. We have reanalysed the proposed solution to the atmospheric
neutrino anomaly in terms of non-standard neutrino-matter interactions (NSI) as
well as the standard nu_mu -> nu_tau oscillations (OSC). Our statistical
analysis shows that a pure NSI mechanism is now ruled out at 99%, while the
standard nu_mu -> nu_tau OSC mechanism provides a quite remarkably good
description of the anomaly. We therefore study an extended mechanism of
neutrino propagation which combines both oscillation and non-standard
neutrino-matter interactions, in order to derive limits on flavour-changing
(FC) and non-universal (NU) neutrino interactions. We obtain that the
off-diagonal flavour-changing neutrino parameter epsilon and the diagonal
non-universality neutrino parameter epsilon' are confined to -0.03 < epsilon <
0.02 and |epsilon'| < 0.05 at 99.73% CL. These limits are model independent and
they are obtained from pure neutrino-physics processes. The stability of the
neutrino oscillation solution to the atmospheric neutrino anomaly against the
presence of non-standard neutrino interactions establishes the robustness of
the near-maximal atmospheric mixing and massive-neutrino hypothesis. The best
agreement with the data is obtained for Delta_m^2 = 2.3*10^{-3} eV^2,
sin^2(2*theta) = 1, epsilon = 6.7*10^{-3} and epsilon' = 1.1*10^{-3}, although
the chi^2 function is quite flat in the epsilon and epsilon' directions for
epsilon, epsilon' -> 0.Comment: 26 pages, LaTeX file using REVTeX4, 1 table and 12 figures included.
Added a revised analysis which takes into account the new 1489-day
Super-Kamiokande and final MACRO data. The bound on NSI parameters is
considerably improve
- …