12 research outputs found

    Correlation between Serum Levels of 3,3',5'-Triiodothyronine and Thyroid Hormones Measured by Liquid Chromatography-Tandem Mass Spectrometry and Immunoassay.

    No full text
    For measuring serum 3,3',5'-triiodothyronine (rT3) levels, radioimmunoassay (RIA) has traditionally been used owing to the lack of other reliable methods; however, it has recently become difficult to perform. Meanwhile, liquid chromatography-tandem mass spectrometry (LC-MS/MS) has recently been attracting attention as a novel alternative method in clinical chemistry. To the best of our knowledge, there are no studies to date comparing results of the quantification of human serum rT3 between LC-MS/MS and RIA. We therefore examined the feasibility of LC-MS/MS as a novel alternative method for measuring serum rT3, thyroxine (T4), and 3,5,3'-triiodothyronine (T3) levels.Assay validation was performed by LC-MS/MS using quality control samples of rT3, T4, and T3 at 4 various concentrations which were prepared from reference compounds. Serum samples of 50 outpatients in our department were quantified both by LC-MS/MS and conventional immunoassay for rT3, T4, and T3. Correlation coefficients between the 2 measurement methods were statistically analyzed respectively.Matrix effects were not observed with our method. Intra-day and inter-day precisions were less than 10.8% and 9.6% for each analyte at each quality control level, respectively. Intra-day and inter-day accuracies were between 96.2% and 110%, and between 98.3% and 108.6%, respectively. The lower limit of quantification was 0.05 ng/mL. Strong correlations were observed between the 2 measurement methods (correlation coefficient, T4: 0.976, p < 0.001; T3: 0.912, p < 0.001; rT3: 0.928, p < 0.001).Our LC-MS/MS system requires no manual cleanup operation, and the process after application of a sample is fully automated; furthermore, it was found to be highly sensitive, and superior in both precision and accuracy. The correlation between the 2 methods over a wide range of concentrations was strong. LC-MS/MS is therefore expected to become a useful tool for clinical diagnosis and research

    Correlation between Serum Levels of 3,3',5'-Triiodothyronine and Thyroid Hormones Measured by Liquid Chromatography-Tandem Mass Spectrometry and Immunoassay.

    Get PDF
    For measuring serum 3,3',5'-triiodothyronine (rT3) levels, radioimmunoassay (RIA) has traditionally been used owing to the lack of other reliable methods; however, it has recently become difficult to perform. Meanwhile, liquid chromatography-tandem mass spectrometry (LC-MS/MS) has recently been attracting attention as a novel alternative method in clinical chemistry. To the best of our knowledge, there are no studies to date comparing results of the quantification of human serum rT3 between LC-MS/MS and RIA. We therefore examined the feasibility of LC-MS/MS as a novel alternative method for measuring serum rT3, thyroxine (T4), and 3,5,3'-triiodothyronine (T3) levels.Assay validation was performed by LC-MS/MS using quality control samples of rT3, T4, and T3 at 4 various concentrations which were prepared from reference compounds. Serum samples of 50 outpatients in our department were quantified both by LC-MS/MS and conventional immunoassay for rT3, T4, and T3. Correlation coefficients between the 2 measurement methods were statistically analyzed respectively.Matrix effects were not observed with our method. Intra-day and inter-day precisions were less than 10.8% and 9.6% for each analyte at each quality control level, respectively. Intra-day and inter-day accuracies were between 96.2% and 110%, and between 98.3% and 108.6%, respectively. The lower limit of quantification was 0.05 ng/mL. Strong correlations were observed between the 2 measurement methods (correlation coefficient, T4: 0.976, p < 0.001; T3: 0.912, p < 0.001; rT3: 0.928, p < 0.001).Our LC-MS/MS system requires no manual cleanup operation, and the process after application of a sample is fully automated; furthermore, it was found to be highly sensitive, and superior in both precision and accuracy. The correlation between the 2 methods over a wide range of concentrations was strong. LC-MS/MS is therefore expected to become a useful tool for clinical diagnosis and research

    Fibroblast Growth Factor Family in the Progression of Prostate Cancer

    No full text
    Fibroblast growth factors (FGFs) and FGF receptors (FGFRs) play an important role in the maintenance of tissue homeostasis and the development and differentiation of prostate tissue through epithelial-stromal interactions. Aberrations of this signaling are linked to the development and progression of prostate cancer (PCa). The FGF family includes two subfamilies, paracrine FGFs and endocrine FGFs. Paracrine FGFs directly bind the extracellular domain of FGFRs and act as a growth factor through the activation of tyrosine kinase signaling. Endocrine FGFs have a low affinity of heparin/heparan sulfate and are easy to circulate in serum. Their biological function is exerted as both a growth factor binding FGFRs with co-receptors and as an endocrine molecule. Many studies have demonstrated the significance of these FGFs and FGFRs in the development and progression of PCa. Herein, we discuss the current knowledge regarding the role of FGFs and FGFRs&#8212;including paracrine FGFs, endocrine FGFs, and FGFRs&#8212;in the development and progression of PCa, focusing on the representative molecules in each subfamily

    A Novel Homozygous Mutation of Thyroid Peroxidase Gene Abolishes a Disulfide Bond Leading to Congenital Hypothyroidism

    No full text
    Congenital hypothyroidism (CH) is the most prevalent congenital endocrine disorder and causes mental retardation. A male Japanese patient with first cousin marriage parents was diagnosed as CH at 10 months. He was born before introduction of mass screening for CH. With continuous thyroid hormone replacement therapy, normal thyroid hormone status was maintained until adulthood. Genetic screening of next-generation sequencing was performed at the age of 52 years, and we identified a new homozygous thyroid peroxidase (TPO) gene mutation (GRCh38.p13, chromosome 2 at position 1493997, c.1964 G>T, p.Cys655Phe). TPO is an important enzyme to produce thyroid hormone. As demonstrated by a homology analysis of TPO proteins among different species, cysteine 655 residue is highly conserved, suggesting an important role in maintaining TPO function and structure. An in silico study with three-dimensional structure of the novel mutation was performed and suggested that the mutation abolished disulfide bond between cysteines at positions 598 and 655. An in vitro functional analysis using HEK293 cells revealed that TPO activity of the mutant was significantly impaired compared with that of the wild type. Furthermore, study of immunohistochemistry showed that localization of TPO in cells did not differ between the wild type and the mutant. In conclusion, this single disulfide bond loss mutation of a new TPO homozygous mutation, p.Cys655Phe, reduced TPO activity and caused congenital hypothyroidism without affecting subcellular localization of TPO proteins
    corecore