47 research outputs found

    Chemical Characterization of a Volatile Dubnium Compound, DbOCl3

    Get PDF
    The formation and the chemical characterization of single atoms of dubnium (Db, element 105), in the form of its volatile oxychloride, was investigated using the on-line gas phase chromatography technique, in the temperature range 350–600 °C. Under the exactly same chemical conditions, comparative studies with the lighter homologues of Group 5 in the Periodic Table clearly indicate the volatility sequence being NbOCl3 > TaOCl3 ≥ DbOCl3. From the obtained experimental results, thermochemical data for DbOCl3 were derived. The present study delivers reliable experimental information for theoretical calculations on chemical properties of transactinides

    Study of fission using multi-nucleon transfer reactions

    Get PDF
    Multi-nucleon transfer channels of the reactions of 18O+232Th, 18O+238U, 18O+248Cm were used to measure fission-fragment mass distribution for various nuclides and their excitation energy dependence. Predominantly asymmetric fission is observed at low excitation energies for all the studied cases, with an increase of the symmetric fission towards high excitation energies. Experimental data are compared with predictions of the fluctuation-dissipation model, where effects of multi-chance fission (neutron evaporation prior to fission) was introduced. It was shown that a reliable understanding of the observed fission fragment mass distributions can be obtained only invoking multi-chance fissions

    A Comprehensive Approach to Determination of Nuclear Data of Unstable Nuclei

    No full text
    A comprehensive approach to determine nuclear data of unstable nuclei will be described. It consists of a measurement of fission and capture cross sections, mass distribution of fission fragments (independent fission yields) and number of prompt fission neutrons by the method of surrogate reactions. A multi-dimensional Langevin model is being developed to estimate the independent fission yields theoretically. Furthermore, the β decay properties of the fission fragments, almost all are neutron-rich unstable nuclei, are investigated systematically by improving the gross theory of β decay, which will yield information on the decay heat and delayed-neutron dat

    A Comprehensive Approach to Determination of Nuclear Data of Unstable Nuclei

    No full text
    A comprehensive approach to determine nuclear data of unstable nuclei will be described. It consists of a measurement of fission and capture cross sections, mass distribution of fission fragments (independent fission yields) and number of prompt fission neutrons by the method of surrogate reactions. A multi-dimensional Langevin model is being developed to estimate the independent fission yields theoretically. Furthermore, the β decay properties of the fission fragments, almost all are neutron-rich unstable nuclei, are investigated systematically by improving the gross theory of β decay, which will yield information on the decay heat and delayed-neutron dat

    Experimental fission study using multi-nucleon transfer reactions

    Get PDF
    It is shown that the multi-nucleon transfer reactions is a powerful tool to study fission of exotic neutron-rich actinide nuclei, which cannot be accessed by particle-capture or heavy-ion fusion reactions. In this work, multi-nucleon transfer channels of the reactions of ¹⁸O+²³²Th, ¹⁸O+²³⁸U and ¹⁸O+²⁴⁸Cm are used to study fission for various nuclei from many excited states. Identification of fissioning nuclei and of their excitation energy is performed on an event-by-event basis, through the measurement of outgoing ejectile particle in coincidence with fission fragments. Fission fragment mass distributions are measured for each transfer channel. Predominantly asymmetric fission is observed at low excitation energies for all studied cases, with a gradual increase of the symmetric mode towards higher excitation energy. The experimental distributions are found to be in general agreement with predictions of the fluctuation-dissipation model. Role of multi-chance fission in fission fragment mass distributions is discussed, where it is shown that mass-asymmetric structure remaining at high excitation energies originates from low-excited nuclei by evaporation of neutrons

    Fission Study of Actinide Nuclei Using Multi-nucleon Transfer Reactions

    Get PDF
    Scientific Workshop on Nuclear Fission Dynamics and the Emission of Prompt Neutrons and Gamma Rays, THEORY-3We have developed a set up to measure fission properties of excited compound nuclei populated by multi-nucleon transfer reactions. This approach has an advantage that we can study fission of neutron-rich nuclei which cannot be accessed by particle or charged-particle capture reactions. Unique feature in our setup is that we can produce fission data for many nuclei depending on different transfer channels. Also wide excitation energy range can be covered in this set up, allowing us to measure the excitation energy dependence of the fission properties. Preliminary data obtained in the [18]O + [238]U reaction will be presented

    New data for total 3He(γ,p)D and 3He(γ,pp)n cross sections compared to current theory

    Get PDF
    A simultaneous measurement of the cross sections of the 3He(γ,p)D and 3He(γ,pp)n reactions has been performed for the first time using monoenergetic pulsed γ-rays at E=10.2 and 16.0 MeV. Charged fragments from the reactions were detected with an efficiency of 100% using a 4 time projection chamber containing 3He gas as an active target. The incident γ-ray flux was measured by a γ-ray detector. Both the track and energy loss signals of charged fragments were obtained in an off-line analysis and used to clearly identify the reaction channel. Thus, the (γ,p) and (γ,pp) cross sections have been determined with small uncertainty. A comparison of the new data to current theory based on the AV18+Urbana IX nuclear forces including π- and ρ-like meson exchange currents shows a severe discrepancy at 10.2 MeV, while at 16.0 MeV data and theory agree within about 12%. Three-nucleon force effects are small, but in general shift the theory in the correct direction

    Experimental fission study using multi-nucleon transfer reactions

    No full text
    It is shown that the multi-nucleon transfer reactions is a powerful tool to study fission of exotic neutron-rich actinide nuclei, which cannot be accessed by particle-capture or heavy-ion fusion reactions. In this work, multi-nucleon transfer channels of the reactions of 18O+232Th, 18O+238U and 18O+248Cm are used to study fission for various nuclei from many excited states. Identification of fissioning nuclei and of their excitation energy is performed on an event-by-event basis, through the measurement of outgoing ejectile particle in coincidence with fission fragments. Fission fragment mass distributions are measured for each transfer channel. Predominantly asymmetric fission is observed at low excitation energies for all studied cases, with a gradual increase of the symmetric mode towards higher excitation energy. The experimental distributions are found to be in general agreement with predictions of the fluctuation-dissipation model. Role of multi-chance fission in fission fragment mass distributions is discussed, where it is shown that mass-asymmetric structure remaining at high excitation energies originates from low-excited nuclei by evaporation of neutrons
    corecore