99 research outputs found

    Hypoxia induces transcription of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-4 gene via hypoxia-inducible factor-1α activation

    Get PDF
    AbstractThe PFKFB4 gene encodes isoenzyme of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB or PFK-2/FBPase-2) which originally was found in the testes. We have studied hypoxic regulation of PFKFB4 gene in prostate cancer cell line, PC-3, and several other cancer cell lines. It was shown that hypoxia significantly induced PFKFB4 mRNA levels in PC-3 as well as in HeLa, Hep3B and HepG2 cell lines. Hypoxia increased PFKFB4 protein levels also. Moreover, desferrioxamine and cobalt chloride, which are known to mimic hypoxia, also had a stimulatory effect on the expression of PFKFB4 mRNA. In order to investigate the mechanisms of hypoxic regulation of PFKFB4 gene expression, we used dimethyloxalylglycine, which has the ability to mimic effect of hypoxia by significant induction of hypoxia-inducible factor (HIF-1α) protein levels. Our studies showed that PFKFB4 mRNA expression in PC-3, HeLa, Hep3B and HepG2 cell lines was highly responsive to dimethyloxalylglycine, an inhibitor of HIF-1α hydroxylase enzymes, suggesting that the hypoxia responsiveness of this gene is regulated by HIF proteins. To better understand the hypoxic regulation of PFKFB4 gene expression, we isolated genomic DNA, which includes the promoter region of PFKFB4. Cell transfection, deletion and site-specific mutagenesis of the PFKFB4 promoter region indicates that hypoxic induction of PFKFB4 gene expression is mediated by the hypoxia-responsive element (HRE). These experiments identified a HRE 422–429 bp upstream from the translation start site. Thus, our results indicate that testis-specific form of PFKFB or PFK-2/FBPase-2 is also expressed in several cancer cell lines and that hypoxia induces transcription of PFKFB4 gene in these cell lines by HIF-1α dependent mechanism. HRE in 5′-promoter region of PFKFB4 gene mediates hypoxic induction of PFKFB4 gene transcription

    Genome-wide identification and annotation of HIF-1α binding sites in two cell lines using massively parallel sequencing

    Get PDF
    We identified 531 and 616 putative HIF-1α target sites by ChIP-Seq in the cancerous cell line DLD-1 and the non-cancerous cell line TIG-3, respectively. We also examined the positions and expression levels of transcriptional start sites (TSSs) in these cell lines using our TSS-Seq method. We observed that 121 and 48 genes in DLD-1 and TIG-3 cells, respectively, had HIF-1α binding sites in proximal regions of the previously reported TSSs that were up-regulated at the transcriptional level. In addition, 193 and 123 of the HIF-1α target sites, respectively, were located in proximal regions of previously uncharacterized TSSs, namely, TSSs of putative alternative promoters of protein-coding genes or promoters of putative non-protein-coding transcripts. The hypoxic response of DLD-1 cells was more significant than that of TIG-3 cells with respect to both the number of target sites and the degree of induced changes in transcript expression. The Nucleosome-Seq and ChIP-Seq analyses of histone modifications revealed that the chromatin formed an open structure in regions surrounding the HIF-1α binding sites, but this event occurred prior to the actual binding of HIF-1α. Different cellular histories may be encoded by chromatin structures and determine the activation of specific genes in response to hypoxic shock. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11568-011-9150-9) contains supplementary material, which is available to authorized users

    Identification of hypoxia-inducible factor 1 ancillary sequence and its function in vascular endothelial growth factor gene induction by hypoxia and nitric oxide.

    Get PDF
    Transcription of hypoxia-inducible genes is regulated by hypoxia response elements (HREs) located in either the promoter or enhancer regions. Analysis of these elements reveals the presence of one or more binding sites for hypoxia-inducible factor 1 (HIF-1). Hypoxia-inducible genes include vascular endothelial growth factor (VEGF), erythropoietin, and glycolytic enzyme genes. Site-directed mutational analysis of the VEGF gene promoter revealed that an HIF-1 binding site (HBS) and its downstream HIF-1 ancillary sequence (HAS) within the HRE are required as cis-elements for the transcriptional activation of VEGF by either hypoxia or nitric oxide (NO). The core sequences of the HBS and the HAS were determined as TACGTG and CAGGT, respectively. These elements form an imperfect inverted repeat, and the spacing between these motifs is crucial for activity of the promoter. Gel shift assays demonstrate that as yet unknown protein complexes constitutively bind to the HAS regardless of the presence of these stimuli in several cell lines, in contrast with hypoxia- or NO-induced activation of HIF-1 binding to the HBS. A common structure of the HRE, which consists of the HBS and the HAS, is seen among several hypoxia-inducible genes, suggesting the presence of a novel mechanism mediated by the HAS for the regulation of these genes

    Thymidine Catabolism as a Metabolic Strategy for Cancer Survival

    Get PDF
    Thymidine phosphorylase (TP), a rate-limiting enzyme in thymidine catabolism, plays a pivotal role in tumor progression; however, the mechanisms underlying this role are not fully understood. Here, we found that TP-mediated thymidine catabolism could supply the carbon source in the glycolytic pathway and thus contribute to cell survival under conditions of nutrient deprivation. In TP-expressing cells, thymidine was converted to metabolites, including glucose 6-phosphate, lactate, 5-phospho-α-D-ribose 1-diphosphate, and serine, via the glycolytic pathway both in vitro and in vivo. These thymidine-derived metabolites were required for the survival of cells under low-glucose conditions. Furthermore, activation of thymidine catabolism was observed in human gastric cancer. These findings demonstrate that thymidine can serve as a glycolytic pathway substrate in human cancer cells

    Thymidine catabolism promotes NADPH oxidase-derived reactive oxygen species (ROS) signalling in KB and yumoto cells

    Get PDF
    Thymidine phosphorylase (TP) is a rate-limiting enzyme in the thymidine catabolic pathway. TP is identical to platelet-derived endothelial cell growth factor and contributes to tumour angiogenesis. TP induces the generation of reactive oxygen species (ROS) and enhances the expression of oxidative stress-responsive genes, such as interleukin (IL)-8. However, the mechanism underlying ROS induction by TP remains unclear. In the present study, we demonstrated that TP promotes NADPH oxidase-derived ROS signalling in cancer cells. NADPH oxidase inhibition using apocynin or small interfering RNAs (siRNAs) abrogated the induction of IL-8 and ROS in TP-expressing cancer cells. Meanwhile, thymidine catabolism induced by TP increased the levels of NADPH and intermediates of the pentose phosphate pathway (PPP). Both siRNA knockdown of glucose 6-phosphate dehydrogenase (G6PD), a rate-limiting enzyme in PPP, and a G6PD inhibitor, dihydroepiandrosterone, reduced TP-induced ROS production. siRNA downregulation of 2-deoxy-D-ribose 5-phosphate (DR5P) aldolase, which is needed for DR5P to enter glycolysis, also suppressed the induction of NADPH and IL-8 in TP-expressing cells. These results suggested that TP-mediated thymidine catabolism increases the intracellular NADPH level via the PPP, which enhances the production of ROS by NADPH oxidase and activates its downstream signalling

    Colorectal tumors require NUAK1 for protection from oxidative stress

    Get PDF
    The authors wish to thank the staff of the CRUK Beatson Institute Biological Services Unit for animal husbandry and assistance with in vivo experiments; the staff of the CRUK BI Histology core facility and William Clark of the NGS core facility; David McGarry, Rene Jackstadt, Jiska Van der Reest, Justin Bower and Heather McKinnon for many helpful discussions, and countless colleagues at the CRUK BI and Glasgow Institute of Cancer Sciences for support; Prem Premsrirut & Mirimus Inc. for design and generation of dox-inducible Nuak1 shRNA expressing mice Nathanael Gray for initial provision of NUAK1 inhibitors. Funding was provided by the University of Glasgow and the CRUK Beaton Institute. J.P. was supported by European Commission Marie Curie actions C.I.G. 618448 “SERPLUC” to D.J.M.; N.M. was supported through Worldwide Cancer (formerly AICR) grant 15-0279 to O.J.S. & D.J.M.; B.K. was funded through EC Marie Curie actions mobility award 705190 “NuSiCC”; T.M. was funded through British Lung Foundation grant APHD13-5. The laboratories of S.R.Z. (A12935), O.J.S. (A21139) and M.D. (A17096) are funded by Cancer Research UK. O.J.S. was additionally supported by European Research Council grant 311301 “ColoCan”.Peer reviewedPostprin

    Identification of a novel protein kinase mediating Akt survival signaling to the ATM protein

    Get PDF
    We identified a novel human AMP-activated protein kinase (AMPK) family member, designated ARK5, encoding 661 amino acids with an estimated molecular mass of 74 kDa. The putative amino acid sequence reveals 47, 45.8, 42.4, and 55% homology to AMPK-alpha1, AMPK-alpha2, MELK and SNARE respectively, suggesting that it is a new member of the AMPK family. It has a putative Akt phosphorylation motif at amino acids 595600, and Ser(600) was found to be phosphorylated by active Akt resulting in the activation of kinase activity toward the SAMS peptide, a consensus AMPK substrate. During nutrient starvation, ARK5 supported the survival of cells in an Akt-dependent manner. In addition, we also demonstrated that ARK5, when activated by Akt, phosphorylated the ATM protein that is mutated in the human genetic disorder ataxia-telangiectasia and also induced the phosphorylation of p53. On the basis of our current findings, we propose that a novel AMPK family member, ARK5, is the tumor cell survival factor activated by Akt and acts as an ATM kinase under the conditions of nutrient starvation
    corecore