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Abstract The PFKFB4 gene encodes isoenzyme of 6-phos-
phofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB or PFK-
2/FBPase-2) which originally was found in the testes. We have
studied hypoxic regulation of PFKFB4 gene in prostate cancer
cell line, PC-3, and several other cancer cell lines. It was shown
that hypoxia significantly induced PFKFB4 mRNA levels in PC-
3 as well as in HeLa, Hep3B and HepG2 cell lines. Hypoxia
increased PFKFB4 protein levels also. Moreover, desferriox-
amine and cobalt chloride, which are known to mimic hypoxia,
also had a stimulatory effect on the expression of PFKFB4
mRNA. In order to investigate the mechanisms of hypoxic
regulation of PFKFB4 gene expression, we used dimethyloxal-
ylglycine, which has the ability to mimic effect of hypoxia by
significant induction of hypoxia-inducible factor (HIF-1a) pro-
tein levels. Our studies showed that PFKFB4 mRNA expression
in PC-3, HeLa, Hep3B and HepG2 cell lines was highly
responsive to dimethyloxalylglycine, an inhibitor of HIF-1a
hydroxylase enzymes, suggesting that the hypoxia responsiveness
of this gene is regulated by HIF proteins. To better understand
the hypoxic regulation of PFKFB4 gene expression, we isolated
genomic DNA, which includes the promoter region of PFKFB4.
Cell transfection, deletion and site-specific mutagenesis of the
PFKFB4 promoter region indicates that hypoxic induction of
PFKFB4 gene expression is mediated by the hypoxia-responsive
element (HRE). These experiments identified a HRE 422–429 bp
upstream from the translation start site. Thus, our results indicate
that testis-specific form of PFKFB or PFK-2/FBPase-2 is also
expressed in several cancer cell lines and that hypoxia induces
transcription of PFKFB4 gene in these cell lines by HIF-1a
dependent mechanism. HRE in 50-promoter region of PFKFB4
gene mediates hypoxic induction of PFKFB4 gene transcription.
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1. Introduction

Hypoxia is an important component of many pathophysi-

ological processes including tumor formation and growth.

Hypoxia is one of the most potent inducers of gene expression

especially genes involved in glycolysis for maintaining cellular

energy [1–3]. This change from aerobic respiration to glycolysis

is essential for cell survival in hypoxic conditions. Most in-

terestingly, tumors have a high glycolytic activity even in

normoxic conditions that correlate with the increased expres-

sion of glycolytic enzymes. The fructose-2,6-biphosphate is the

most potent allosteric activator of 6-phosphofructo-1-kinase, a

key regulatory enzyme of glycolysis, and an inhibitor of fruc-

tose-1,2-biphosphatase [4–6]. Because of the antagonistic ef-

fects in these enzymes, fructose-1,2-biphosphatase plays a

critical role in the opposing glycolytic and gluconeogenic

pathways. A single family of bifunctional 6-phosphofructo-2-

kinase/fructose-2,6-biphosphate (PFK-2/FBPase-2 or PFKFB)

enzymes is responsible for maintaining the cellular levels of

FBPase-2 by synthesizing and degrading this compound at

distinctive active sites in each enzyme type and controls gly-

colysis [6,7]. Several tissue-specific mammalian PFKFB or

PFK-2/FBPase-2 isoenzymes have been identified (reviewed in

[8]). PFK-2/FBPase-2 isoenzymes are encoded by at least four

different genes (PFKFB1–4) in human cells. These genes en-

code isoenzymes that differ not only in their tissue distribution

but also in their kinetic and regulatory properties. The

PFKFB4 gene encodes isozyme of PFK-2/FBPase-2 which

originally was found in the testes. Importantly, tissue-specific

isoforms are not completely exclusive and several tissues ex-

press more than one isoforms [9,10]. This multiple expression

suggests that each isozyme plays a key role in different physi-

ologic conditions or in response to different hormonal stimu-

lation. It is possible that there is a cell specific expression of

PFKFB isozymes in different type of cells inside one organ.

The regulation of gene expression by hypoxia appears to be

linked to a common mechanism, which includes the activation

of a transcriptional complex termed hypoxia-inducible factor-1

(HIF-1) that binds to specific enhancer elements in hypoxia-

responsive genes [11–14]. Hydroxylation of specific prolyl and

asparaginyl residues in the alpha subunits of HIF-1a by a

series of non-heme iron-dependent dioxygenases has been de-

fined as a novel mechanism of protein modification that
blished by Elsevier B.V. All rights reserved.
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transduces the oxygen-sensing signal [13,15]. Many genes

which expression are regulated by hypoxia contains HIF-1

binding site (hypoxia-responsible element/enhancer) [3,13,16–

20]. Transcription factor HIF-1 is a necessary mediator of the

hypoxic effect as well as Pasteur effect in mammalian cells. HIF

is central in coordinating many of the transcriptional adapta-

tions to hypoxia.

Previously we have shown that one isozyme of PFKFB or

PFK-2/FBPase-2, PFKBF3, is highly induced by hypoxia in

vitro in several cell lines and that cobalt and desferrioxamine

has the ability to mimic effect of hypoxia by chelation or

substitution of iron [21]. This induction could be replicated by

the use of an inhibitor of the prolyl hydroxylase enzymes re-

sponsible for the VHL-dependent destabilization and tagging

of HIF-1a. Marsin et al. [22] have shown that the stimulation

of glycolysis by hypoxia in activated monocytes requires the

phosphorylation and activation of inducible 6-phosphofructo-

2-kinase/fructose-2,6-biphosphatase-3 (iPFK-2) enzyme, a

well-known stimulator of glycolysis, by AMP-activated pro-

tein kinase [22–25]. Recently, we have shown that the expres-

sion of all four genes of PFKFB or PFK-2/FBPase-2

(PFKFB1–4) are responsive to hypoxia in vivo but regulation

of the expression of these PFKFB isozymes following hypoxic

treatment is different and can occurs in an organ-specific and

possibly cell-specific manner [10]. However, the expression of

6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-4 iso-

zyme, which originally was found in the testes, in other cells as

well as mechanisms of hypoxic regulation of the PFKFB4 gene

transcription has not been addressed.

In the present study, we have characterized the effect of

hypoxia on the expression of 6-phosphofructo-2-kinase/fruc-

tose-2,6-biphosphatase-4 isozyme in the human prostate can-

cer cell line, PC-3, as well as in HeLa, Hep3B and HepG2 cell

lines and the role of HRE in the transcriptional response of

this gene to hypoxia.
2. Materials and methods

2.1. Cell cultures
Human prostate cancer cell line, PC-3, human hepatoma Hep3B and

HepG2 cell lines and HeLa cells were obtained from the American
Type Culture Collection (Rockville, MD, USA) and grown according
to manufacturer protocols. The cells were incubated at 37 �C before
harvesting under normoxic (21% oxygen) or hypoxic conditions (1%
oxygen) or exposed for 6 h to 0.13 mM desferrioxamine, 0.1 mM co-
balt chloride or 1 mM dimethyloxalylglycine, a specific inhibitor of the
prolyl hydroxylase enzymes, which protects HIF-1a from degradation
and significantly increases HIF-1a protein levels.
Chemicals were obtained from Sigma, except dimethyloxalylglycine

(Frontier Scientific, Inc., Logan, UT, USA).

2.2. RNA isolation
Total RNA was extracted from cells using Trizol reagent according

to manufacturer protocols (Invitrogen, Carlsbad, CA, USA). RNA
pellets was washed with 75% ethanol and dissolved in nuclease-free
water.

2.3. Plasmid construction
The cDNA probe of human 6-phosphofructo-2-kinase/fructose-2,6-

biphosphatase-4 was created by RT-PCR of total RNA from human
prostate cancer (PC-3) cells using forward primer (50-GGGAT-
GGCGTCCCCACGGG-30) and reverse primer (50-CGCTCTCCG-
TTCTCGGGTG-30). These oligonucleotides correspond to nucleotide
sequences 15–33 and 434–416 of human PFKFB4 cDNA, respectively
(GenBankTM Accession No. NM_004567). The PCR fragment was
cloned into plasmid pCR II-TOPO (Invitrogen). A BglII–EcoRI
fragment of cDNA for human PFKFB4 cDNA was recloned into
pBluescript II SKþ (Stratagene, La Jolla, CA, USA). Following di-
gestion with XbaI, this plasmid was utilized to generate a radiolabeled
antisense probe for the human PFKFB4 probe generation using T7
RNA-polymerase and [a32P]UTP. PFKFB4 construct used in this
work was verified by sequencing the insert in the plasmid.
The 18S ribosomal RNA antisense probe was used to evaluate total

RNA. The plasmids for synthesis of mouse 18S ribosomal RNA probe
for ribonuclease protection assays were described previously [21].

2.4. In vitro transcription to prepare antisense probes for ribonuclease
protection assay

Synthesis of radiolabeled probes for ribonuclease protection assay
was carried out according to BD Biosciences protocol using T7 RNA
polymerase (BD Biosciences Pharmingen, San Diego, CA, USA) and
[a32P]UTP (Amersham Biosciences). For ribonuclease protection as-
says, water solutions of total RNA were dried under vacuum and
dissolved in 25 ll of 80% formamide hybridization buffer containing
labeled probes. Samples were preincubated for 5 min at 85 �C and then
incubated for 16 h at 45 �C as described previously [26]. The extracted,
protected probe fragments were run on a 6% polyacrylamide se-
quencing gel in 1· Tris–borate–EDTA buffer for two hours at 50 mA.
The gel was then dried and expression of mRNA was determined using
Fujix BAS 2000 Bio-Image Analyzer (Fuji Photo Film Co.). Intensity
of each mRNA band was normalized for 18S ribosomal RNA level.

2.5. Reporter plasmid constructs and transient transfection assays
A 3 kb nucleotide sequence containing the promoter and 50-flanking

region of human PFKFB4 gene was isolated using DNA from pan-
creatic cancer cell line Panc-1. Fragments of PFKFB4 gene were
cloned into the pGL3-basic or pGL3-promoter vector (Promega,
USA). A series of deletion mutants was prepared by PCR or by re-
striction endonuclease digestion and religation. Mutant was generated
with QuickChange site-directed mutagenesis kit (Stratagene), by using
nucleotides containing the desired mutation as described previously
[27]. All constructs and mutant were sequenced to verify that the
correct sequences or mutation were present. The dominant-negative
HIF-1a construct was generously provided by Dr. M. Kobayashi,
Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan.
The reporter plasmid constructs (1 lg) were transfected into HeLa cells
in a six wells tissue culture plate with 8 ll of Plus reagent and 3 ll of
lipofectamine (Invitrogen). Equal parts of transfected cells then were
seeded on six 35 mm tissue culture plates, grown and incubated before
harvesting under normoxic (21% oxygen) or hypoxic conditions (1%
oxygen) or exposed for 6 hours to 1 mM dimethyloxalylglycine. Cell
extracts were performed using Lysis buffer (Promega).
Luciferase activity was determined in a luminometer (Luminesc-

encer-JNR; ATTO, Tokyo, Japan) using the Dual-Luciferase Reporter
Assay System (Promega) according to the manufacturer’s instruction.
Results were expressed as the percent of the control (untreated cells)
value.

2.6. Western blot analysis
Cells were incubated at 37 �C before harvesting under normoxic (21%

oxygen) or hypoxic conditions (1% oxygen) or exposed for 6 h to 1 mM
dimethyloxalylglycine. Cell extracts were prepared using buffers A, as
previously described [28]. The proteins were resolved using sodium
dodecyl sulfate–polyacrylamide gel (10% acrylamide) electrophoresis
and transferred to a polyvinylidene difluoride membrane (Immobilon-P
Transfer Membrane; Millipore, Chelmsford, MA, USA) by a semi-dry
blotting system. Excess sites on the membrane were saturated with 5%
non-fat dried milk in TPBS (PBS containing 0.1% Tween 20). The
membrane was incubated for 16 h at 4 �C with a 1:5000 dilution of
rabbit polyclonal anti-PFKFB4 antibody. Rabbit polyclonal anti-
PFKFB4 antibody was generated by immunization with a synthetic
peptide from human PFKFB4 (MASPRELTQNPLKK-Cys-NH2)
conjugated with Keyhole Limpet Hemocyanin (KLH) which we re-
ceived fromAsahi TechnoGlass Corp. (Japan). Peptide was certified by
AnaSpec, Inc. (San Jose, CA, USA). Rabbits were immunized subcu-
taneously once with mixture peptide-carrier conjugate and complete
Freund’s adjuvant (Sigma) and four times with a mixture of peptide-
carrier conjugate and incomplete Freund’s adjuvant (Sigma). Horse-
radish peroxidase-conjugated anti-rabbit IgG (Santa Cruz Biotech-
nology, Santa Cruz, CA, USA) was used as a secondary antibody with
1:5000 dilutions. The bands were visualized by enhanced chemilumi-
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nescence’s reagents (Amersham Biosciences). Actin was used for nor-
malization.

2.7. Statistical analysis
The results are expressed as means� standard error of the mean

(S.E.M.) of three or more independent experiments. Comparison of
two means was performed by the use of unpaired Student’s t test.
Statistical significance was assumed at a value of P<0.05.
Fig. 1. Representative polyacrylamide gel autoradiograph employed in
a typical ribonuclease protection assay of PFKFB4, PFKFB3, and
VEGF mRNA from human prostate cancer cell line PC-3 and Western
analysis of HIF-1a protein (A). The cells exposed under hypoxia (H) or
treated with dimethyloxalylglycine (I), desferrioxamine (D) or cobalt
chloride (C) for 6 h. N: control (normoxia) cells. Quantification of the
effect of hypoxia, dimethyloxalylglycine, desferrioxamine and cobalt
chloride on PFKFB4 mRNA levels in PC-3 cell line (B). Intensities of
the PFKFB4 mRNA bands were normalized to 18S rRNA. Bar heights
are mean values obtained from a series of four independent experi-
ments� standard errors of the mean. Representative ethidium bromide
stained agarose gel employed in a typical RT/PCR analysis of PFKFB4
mRNA expression in human prostate cancer cell line PC-3 (C).
3. Results

In this study, we used human prostate cancer cell line, PC-3,

and several other cancer cell lines to study mechanisms of

hypoxic regulation of PFKFB4 gene expression in various

cancer cells.

For this aim, the cells were incubated at 37 �C before har-

vesting under normoxic (21% oxygen) or hypoxic conditions

(1% oxygen) or exposed for 6 h to hypoxia mimics (0.13 mM

desferrioxamine, 0.1 mM cobalt chloride or 1 mM dimethy-

loxalylglycine), total RNA was extracted from cells and

PFKFB4 mRNA was readily quantified by ribonuclease pro-

tection assay or RT/PCR analysis.

3.1. Effect of hypoxia on the PFKFB4 gene in PC-3 cells

We have found that 6-phosphofructo-2-kinase/fructose-2,6-

biphosphatase-4 isoenzyme which originally was found in the

testes is expressed also in the human prostate cancer cell line

PC-3. As shown in Fig. 1A, hypoxia significantly induced 6-

phosphofructo-2-kinase/fructose-2,6-biphosphatase-4 mRNA

levels in this prostate cancer cell line. Moreover, desferriox-

amine (an iron-chelating agent), cobalt chloride (transition

metal) and dimethyloxalylglycine (oxoglutarate analog), which

are known to mimic hypoxia, also had a stimulatory effect on

the expression of PFKFB4 mRNA in these cells. High

responsiveness of the PFKFB or PFK-2/FBPase-2 gene

expression to inhibitor of HIF-hydroxylase enzymes dimeth-

yloxalylglycine in these cells suggests that hypoxic regulation

of PFKFB4 gene expression is mediated via HIF proteins. We

have studied also effect of hypoxia and hypoxia mimics on the

expression of PFKFB3 and VEGF genes to compare hypoxia

responsiveness of PFKFB4 with known HIF-1 dependent

genes. Hypoxia as well as dimethyloxalylglycine, desferriox-

amine and cobalt chloride significantly induced PFKFB3 and

VEGF mRNA levels in this cancer cell line but induction of

PFKFB3 was much stronger than VEGF. Quantification of

the effect of hypoxia and hypoxia mimics on 6-phosphofructo-

2-kinase/fructose-2,6-biphosphatase-4 mRNA expression is

shown in Fig. 1B. Intensity of each PFKFB4 mRNA band was

normalized to those of 18S rRNA level. The PFKFB4 tran-

script levels in prostate cancer cells were increased by hypoxia

in sixfold (P<0.001), by dimethyloxalylglycine in sevenfold

(P<0.001), desferrioxamine in fivefold (P<0.01) and cobalt

chloride in threefold (P<0.05). Strong induction of PFKFB4

mRNA levels in response to hypoxia and dimethyloxalylgly-

cine in PC-3 cells was shown by RT/PCR also (Fig. 1C).

3.2. Effect of hypoxia on the PFKFB4 gene in a HeLa cells

We have shown that hypoxia significantly induced PFKFB/

FBPase-2 mRNA levels in the HeLa cells (Fig. 2A). PFKFB4

transcript levels were significantly increased in these cells also

by desferrioxamine, cobalt chloride and dimethyloxalylglycine.

We have compared effect of hypoxia and hypoxia mimics on
the expression of PFKFB4 in the HeLa cells with induction of

PFKFB3 and Glut1, known HIF-1 dependent genes. However,

as shown in Fig. 2A, hypoxia as well as desferrioxamine and

dimethyloxalylglycine slightly induce PFKFB3 mRNA levels

but hypoxia responsiveness of Glut1 gene in this cell line is

much stronger as compared to PFKFB3.

3.3. Effect of hypoxia on the PFKFB4 gene in hepatoma cell

lines

As shown in Fig. 2B, hypoxia as well as desferrioxamine and

dimethyloxalylglycine significantly induced PFKFB4 mRNA



Fig. 2. Representative polyacrylamide gel autoradiograph employed in
a typical ribonuclease protection assay of PFKFB4, PFKFB3 and
Glut1 mRNA from HeLa (A), HepG2 (B) and Hep3B (C) cell lines.
(D) Western blot analysis of PFKFB4 protein levels in Hep3B cells.
The actin was used to ensure equal loading of the sample. The cells
exposed under hypoxia (H) or treated with dimethyloxalylglycine (I) or
desferrioxamine (D) for 6 h. N: control cells.
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expression in the HepG2 cells. Significant increase of PFKFB4

transcript levels was observed also in other hepatoma cell line,

Hep3B, after 6 h exposure under hypoxia (Fig. 2C). This

hypoxic induction of PFKFB4 mRNA expression was com-

patible with induction of Glut1 mRNA in these cells by hy-

poxia. Further studies showed (Fig. 2C) that PFKFB4 gene

expression was highly responsive to inhibitor of HIF-hydrox-

ylase enzymes dimethyloxalylglycine in Hep3B cells also. Pre-

viously, we have reported that the PFKFB3 gene was highly

induced by hypoxia and dimethyloxalylglycine in Hep3B cells

[21]. As shown in Fig. 2D, hypoxia mimics dimethyloxalyl-

glycine strongly induced PFKFB4 protein levels in Hep3B

cells. The actin was used to ensure equal loading of the sample.

3.4. Hypoxic stimulation of the PFKFB4 gene transcription is

HIF-1 dependent

In order to understand the transcriptional regulation of the

PFKFB or PFK-2/FBPase-2 gene under hypoxic conditions,

we isolated its 3 kb genomic DNA sequence, which includes
the promoter region of this gene. The nucleotide sequence of a

1610 bp of the 50 flanking region of PFKFB4 gene containing

PFKFB4 promoter was subcloned into pGL3-basic vector and

a distal fragment of 50 flanking region of this gene (from )2964
to )1529, where +1 is translation start site) was subcloned into

pGL3-promoter vector. In order to determine the cis-acting

HIF-1 responsive element (HRE) that control the response to

hypoxia of the PFKFB or PFK-2/FBPase-2 gene, several

constructs which contained a luciferase reporter cDNA and

variable 50-regions of the PFKFB4 gene were utilized in

transient transfection assays using HeLa cells. After transfec-

tion, the cell cultures were exposed to hypoxia or incubated

with dimethyloxalylglycine and the results expressed as percent

induction of luciferase activity by hypoxia or dimethyloxalyl-

glycine of untreated control cells. As shown in Fig. 3A, a

construct containing 1610 bp of 50 flanking region fragment,

which included the putative promoter and transcription and

translation start sites of human PFKFB4 gene (from )1564 to

+46, where +1 is translation start site), was highly hypoxia and

dimethyloxalylglycine responsive. Equivalent response was

found with a smaller fragment (from )560 to +46) cloned into

basic pGL3 (Fig. 3A). Much smaller fragment of 50 flanking
region of the PFKFB4 gene (from )560 to )365) was created
using synthetic oligonucleotides and cloned upstream of SV40

promoter into pGL3 promoter plasmid. As shown in Fig. 3A,

this construct retained almost full hypoxia and dimethyloxal-

ylglycine responsiveness. However, 50-flanking sequence (from

)560 to )438) of the human PFKFB or PFK-2/FBPase-2 gene

was unresponsive to either hypoxia or dimethyloxalylglycine.

These results suggested that a hypoxia responsible element was

located within the )437 to )365 segment of the PFKFB4

50-flanking region. Within this segment we identified an

octonucleotide CGCGTGCC (from )429 to )422), which has

homology with a hypoxia responsible element described in

other hypoxia responsive genes. After nucleotide mutation

(CTAG instead CGTG) in the HIF-1 binding site produced

complete ablation of the response to hypoxia and dimethy-

loxalylglycine. A distal fragment of 50 flanking region of

PFKFB4 gene (from )2964 to )1529) was isolated also and

cloned in promoter luciferase vector pGL3. As shown in

Fig. 3A, a distal fragment of 50 flanking region of PFKFB4

gene (from )2964 to )1529) was unresponsive to either hy-

poxia or dimethyloxalylglycine.

To confirm the HIF-1 dependent mechanism of hypoxic

stimulation of PFKFB4 transcription, we used dominant-

negative HIF-1a construct [29] in transient transfection ex-

periments. This construct decrease the HIF-1a expression and

eliminate HIF-1 dependent gene expression induced by hy-

poxia [29]. As shown in Fig. 3B, dominant-negative HIF-1a
construct abrogated the enhanced expression of the PFKFB or

PFK-2/FBPase-2 promoter constructs in HeLa cells.
4. Discussion

Recently, we have shown that tissue-specific isoforms of

PFKFB or PFK-2/FBPase-2 are not completely exclusive and

several tissues express more than one isoforms [10]. The

PFKFB4 gene encodes the PFKFB or PFK-2/FBPase-2 iso-

zyme originally found in the rat [32] and human testes [33,34]

but it is not unexpected that this isozyme is present in other cell

types. Using ribonuclease protection assays and RT-PCR we



Fig. 3. Specific deletions of the 50-UTR and 50-flanking sequence of the human PFKFB4 gene promoter were obtained by digestion with restriction
enzymes or by PCR and gene fragments were subcloned into pGL3-basic or pGL3-promoter vectors, where pGL3-promoter contains a minimal
SV40 promoter sequence (SV40). HeLa cells transfected with luciferase expression vector containing different fragments of 50-flanking region of the
human PFKFB4 gene (A). HeLa cells transfected with luciferase expression vector containing of 50-flanking region of the human PFKFB4 gene or
cotransfected with dominant-negative HIF-1a construct (dnHIF-1a) (B). All calculations of 50 flanking region were made from translation start site
because transcription start site is not detected. The cells exposed under hypoxia (H) or treated with dimethyloxalylglycine (I) for 6 h and luciferase
activity was measured. N: control (normoxia) cells. Results are shown as percent induction of luciferase activity by hypoxia or dimethyloxalylglycine
of control value. Bar heights represent mean values obtained from a series of 3–5 experiments� standard errors of the mean. Each luciferase ex-
periment was conducted in duplicate.
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found detectable basal levels of the PFKBF4 mRNA expres-

sion in the prostate cancer cell line PC-3. Moreover, PFKFB4

transcript was found in HeLa and hepatoma cell lines growing

under normoxic conditions. Thus, this study provides the first

clear evidence that the PFKFB4 gene express in the cells from

other organs, in a different malignant cell lines. Recently, we

have shown that the expression of all four genes of PFKFB or

PFK-2/FBPase-2 (PFKFB1–4) are responsive to hypoxia in

vivo but regulation of the expression of these PFKFB isozymes

following hypoxic treatment is different and can occurs in an

organ-specific and possibly cell-specific manner [10]. Previ-

ously, we have reported also that the PFKFB1–3 genes were

induced by hypoxia in various cell lines and that the effect of

hypoxia was reproduced by hypoxia mimics but regulation of

the expression of these PFKFB isozymes following hypoxic

treatment was different and can occurs in a cell-specific manner

[10,21]. Further studies showed that PFKFB4 gene expression

was highly responsive to hypoxia in the prostate cancer cells as
well as in HeLa and hepatoma cell lines. Previously, we have

reported that the PFKFB4 gene was induced in testis by hy-

poxia in vivo [10]. The major finding reported here is that one

isozyme of PFKFB or PFK-2/FBPase-2 which originally was

found in the testes is also expressed in cancer cells from dif-

ferent organs and that hypoxia highly induces PFKFB4 gene

transcription in all cell lines tested. Expression of PFKFB4 in

malignant cells and overexpression under hypoxic conditions

suggests its possible role in the Warburg effect which was

found in tumor cells [39].

Moreover, our results showed that an iron-chelating agent

desferrioxamine and cobalt chloride (which are known tomimic

hypoxia) have similar effect on the expression of PFKFB4

mRNA in these malignant cell lines. Importantly, cobalt chlo-

ride as well as desferrioxamine have been found to be potent

stimulators of the expression of 6-phosphofructo-2-kinase/

fructose-2,6-biphosphatase-3 and 1mRNA in different cell lines

as well as other hypoxia-responsible genes [10,20,21,24,25,35].
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The above results suggested that the HIF-1 complex was

involved in the hypoxia responsiveness of the PFKFB4 gene.

We have also studied the effect of dimethyloxalylglycine

(specific competitive inhibitor of prolyl-hydroxylase enzymes)

on the expression of PFKFB4 mRNA for investigating the role

of HIF-1a in hypoxic induction of this mRNA. Oxygen sens-

ing is mediated by an oxygen-dependent hydroxylation of

proline-564 in the oxygen dependent degradation domain of

HIF-1a protein. This reaction is mediated by specific iron-

dependent prolyl hydroxylase enzymes that utilize oxoglutar-

ate as a co-substrate [13,14,36]. Inhibition of these enzymes

can induce HIF-1a under normoxic conditions and mimics

hypoxic conditions [13]. Our results showed that PFKFB4

mRNA expression in PC-3, HeLa, Hep3B and HepG2 cell

lines was highly responsive not only to hypoxia but also to

dimethyloxalylglycine, an inhibitor of HIF-1a hydroxylase

enzymes, suggesting that the hypoxia responsiveness of this

gene is regulated by HIF proteins. Thus, our results suggest

that the 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-

4 gene expression is induced in hypoxic conditions in several

different cancer cell lines via HIF-1a dependent mechanism.

We also analyzed expression of glucose transporter-1,

VEGF and PFKFB3 mRNA as a positive control for a hy-

poxia-responsive gene to compare with expression of PFKFB4

mRNA in these cell lines. Our results indicate that hypoxia

enhances Glut1 and VEGF mRNA expression in PC-3, HeLa

and Hep3B cell lines. Character of this induction was similar to

PFKFB4 mRNA expression in these cell lines. Hypoxic in-

duction of other member of the PFKFB or PFK-2/FBPase-2

gene family (PFKFB3) mRNA expression was significant and

compatible to the expression of PFKFB4 mRNA in all cell

lines studied, except HeLa cells. In these cells expression of

Glut1 and PFKFB4 are strongly induced by hypoxia and di-

methyloxalylglycine but expression of PFKFB3 mRNA did

not show significant responses to hypoxia and dimethyloxal-

ylglycine. It is possibly that molecular mechanisms leading to

increase of the expression of PFKFB4 and PFKFB3 genes by

hypoxia are similar but intensity of the hypoxic induction of

PFKFB4 mRNA expression is variable and depends on type of

cells. In contrast to the HeLa cells, in Hep3B cells hypoxia and

dimethyloxalylglycine highly induced the PFKFB4 and Glut1

genes as well as PFKFB3 gene [21].

The PFKFB3 isozyme, which has the highest kinase/

phosphatase ratio, is highly expressed in transformed cells,

suggesting that it may contribute to the high glycolytic rate

observed in tumors [37]. Previous study have shown that

sustained hypoxia upregulates the expression of the PFKFB3

gene and that this activation is mediated by a mechanism that

depends on the activation of the HIF-1 transcription complex

[21]. There are data that iPFK-2 (inducible isoforms of

PFKFB3) protein uniformly increased in the malignant

tissues when compared with corresponding control tissues

[38]. Cancer cells show elevated glycolytic rates, produce high

levels of lactate and pyruvate (the Warburg effect) that cor-

relate with the increased expression of glycolytic enzymes and

glucose transporters via HIF-1 dependent mechanism [39–41].

Since PFKFB or PFK-2/FBPase-2 catalyzes the synthesis and

degradation of FBPase-2, its controls glycolysis and has a

significant role in the Warburg effect, especially PFKFB3

isozyme [21,42]. This study provides evidence that PFKFB4

gene also expressed in cancer cells, strongly response to

hypoxia and possibly has a significant role in the Warburg
effect also. This isozyme like PFKFB3 lacks a serine phos-

phorylation residue that is critical for the down-regulation of

its kinase activity, it should has high K:B ratio and greatly

promotes glycolysis under conditions of limited oxygen sup-

ply [8].

The present study clearly demonstrated that hypoxia and

dimethyloxalylglycine strongly induces PFKFB4 gene expres-

sion by activation of transcription through the HRE located in

50-region of this gene because mutation in the HRE which we

identified in the promoter region of PFKFB4 gene loss of

regulation by hypoxia. This study provides the first clear evi-

dence that hypoxic induction of 6-phosphofructo-2-kinase/

fructose-2,6-biphosphatase-4 gene transcription is dependent

on the transcription factor HIF-1a and mediated by the HRE

located in 50-region of this gene like many other hypoxia in-

ducible genes [2,11,18,20,30,31]. Thus, the regulation of

PFKFB4 gene expression by hypoxia is linked to a common

mechanism, which includes the activation of a transcriptional

complex termed hypoxia-inducible factor that binds to specific

enhancer element. To confirm the HIF-1 dependent mecha-

nism of hypoxic stimulation of PFKFB4 transcription, we also

used dominant-negative HIF-1a construct [29] in transient

transfection experiments. This construct significantly decrease

the HIF-1a expression and eliminate HIF-1 dependent genes

expression (Glut1 and aldolase A mRNA levels) induced by

hypoxia [29]. Also it reduced the expression of Glut1 and the

glucose uptake in the tumor tissues and consequently in vivo

tumorogenesis [29]. Our results indicate that this dominant-

negative HIF-1a construct abrogated the enhanced by di-

methyloxalylglycine expression of the PFKFB or PFK-2/

FBPase-2 promoter constructs in HeLa cells.

Thus, the major finding reported here is that one isozyme of

PFKFB or PFK-2/FBPase-2 which originally was found in the

testes is also expressed in cancer cells from different organs and

that hypoxia highly induces 6-phosphofructo-2-kinase/fruc-

tose-2,6-biphosphatase-4 gene transcription by HIF-1a de-

pendent mechanism. Moreover, hypoxic induction of the

PFKBF4 gene transcription is mediated by the HRE located in

the promoter region of this gene. Expression of PFKFB4 in

malignant cells and overexpression under hypoxic conditions

suggests its possible role in the Warburg effect which was

found in tumor cells.
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