42 research outputs found

    Interactive Rhythmic Auditory Stimulation Reinstates Natural 1/f Timing in Gait of Parkinson's Patients

    Get PDF
    Parkinson's disease (PD) and basal ganglia dysfunction impair movement timing, which leads to gait instability and falls. Parkinsonian gait consists of random, disconnected stride times—rather than the 1/f structure observed in healthy gait—and this randomness of stride times (low fractal scaling) predicts falling. Walking with fixed-tempo Rhythmic Auditory Stimulation (RAS) can improve many aspects of gait timing; however, it lowers fractal scaling (away from healthy 1/f structure) and requires attention. Here we show that interactive rhythmic auditory stimulation reestablishes healthy gait dynamics in PD patients. In the experiment, PD patients and healthy participants walked with a) no auditory stimulation, b) fixed-tempo RAS, and c) interactive rhythmic auditory stimulation. The interactive system used foot sensors and nonlinear oscillators to track and mutually entrain with the human's step timing. Patients consistently synchronized with the interactive system, their fractal scaling returned to levels of healthy participants, and their gait felt more stable to them. Patients and healthy participants rarely synchronized with fixed-tempo RAS, and when they did synchronize their fractal scaling declined from healthy 1/f levels. Five minutes after removing the interactive rhythmic stimulation, the PD patients' gait retained high fractal scaling, suggesting that the interaction stabilized the internal rhythm generating system and reintegrated timing networks. The experiment demonstrates that complex interaction is important in the (re)emergence of 1/f structure in human behavior and that interactive rhythmic auditory stimulation is a promising therapeutic tool for improving gait of PD patients

    Data File Including 48 Datasets with Values Used in Figs. 2 and 3 in PLOS ONE Article

    No full text
    <div>Data File Including 48 Datasets with Values Used in Figs. 2 and 3 in PLOS ONE Article. Thirty of these datasets are the measured time series row data for stride interval in the PD subjects; the remaining 18 datasets are the measured time series row data for stride interval in the control subjects. Each dataset is composed of a single comma separated values (CSV) file and each CSV file stores a data array of two columns: the first column is a time stamp in seconds, the second column is time series data of stride interval. </div

    Cross-Sensory EEG Emotion Recognition with Filter Bank Riemannian Feature and Adversarial Domain Adaptation

    No full text
    Emotion recognition is crucial in understanding human affective states with various applications. Electroencephalography (EEG)—a non-invasive neuroimaging technique that captures brain activity—has gained attention in emotion recognition. However, existing EEG-based emotion recognition systems are limited to specific sensory modalities, hindering their applicability. Our study innovates EEG emotion recognition, offering a comprehensive framework for overcoming sensory-focused limits and cross-sensory challenges. We collected cross-sensory emotion EEG data using multimodal emotion simulations (three sensory modalities: audio/visual/audio-visual with two emotion states: pleasure or unpleasure). The proposed framework—filter bank adversarial domain adaptation Riemann method (FBADR)—leverages filter bank techniques and Riemannian tangent space methods for feature extraction from cross-sensory EEG data. Compared with Riemannian methods, filter bank and adversarial domain adaptation could improve average accuracy by 13.68% and 8.36%, respectively. Comparative analysis of classification results proved that the proposed FBADR framework achieved a state-of-the-art cross-sensory emotion recognition performance and reached an average accuracy of 89.01% ± 5.06%. Moreover, the robustness of the proposed methods could ensure high cross-sensory recognition performance under a signal-to-noise ratio (SNR) ≥ 1 dB. Overall, our study contributes to the EEG-based emotion recognition field by providing a comprehensive framework that overcomes limitations of sensory-oriented approaches and successfully tackles the difficulties of cross-sensory situations

    Classification of mild Parkinson’s disease: data augmentation of time-series gait data obtained via inertial measurement units

    No full text
    Abstract Data-augmentation methods have emerged as a viable approach for improving the state-of-the-art performances for classifying mild Parkinson’s disease using deep learning with time-series data from an inertial measurement unit, considering the limited amount of training datasets available in the medical field. This study investigated effective data-augmentation methods to classify mild Parkinson’s disease and healthy participants with deep learning using a time-series gait dataset recorded via a shank-worn inertial measurement unit. Four magnitude-domain-transformation and three time-domain-transformation data-augmentation methods, and four methods involving mixtures of the aforementioned methods were applied to a representative convolutional neural network for the classification, and their performances were compared. In terms of data-augmentation, compared with baseline classification accuracy without data-augmentation, the magnitude-domain transformation performed better than the time-domain transformation and mixed-data augmentation. In the magnitude-domain transformation, the rotation method significantly contributed to the best performance improvement, yielding accuracy and F1-score improvements of 5.5 and 5.9%, respectively. The augmented data could be varied while maintaining the features of the time-series data obtained via the sensor for detecting mild Parkinson’s in gait; this data attribute may have caused the aforementioned trend. Notably, the selection of appropriate data extensions will help improve the classification performance for mild Parkinson’s disease

    Relationship between neural rhythm generation disorders and physical disabilities in Parkinson's disease patients' walking.

    No full text
    Walking is generated by the interaction between neural rhythmic and physical activities. In fact, Parkinson's disease (PD), which is an example of disease, causes not only neural rhythm generation disorders but also physical disabilities. However, the relationship between neural rhythm generation disorders and physical disabilities has not been determined. The aim of this study was to identify the mechanism of gait rhythm generation. In former research, neural rhythm generation disorders in PD patients' walking were characterized by stride intervals, which are more variable and fluctuate randomly. The variability and fluctuation property were quantified using the coefficient of variation (CV) and scaling exponent α. Conversely, because walking is a dynamic process, postural reflex disorder (PRD) is considered the best way to estimate physical disabilities in walking. Therefore, we classified the severity of PRD using CV and α. Specifically, PD patients and healthy elderly were classified into three groups: no-PRD, mild-PRD, and obvious-PRD. We compared the contributions of CV and α to the accuracy of this classification. In this study, 45 PD patients and 17 healthy elderly people walked 200 m. The severity of PRD was determined using the modified Hoehn-Yahr scale (mH-Y). People with mH-Y scores of 2.5 and 3 had mild-PRD and obvious-PRD, respectively. As a result, CV differentiated no-PRD from PRD, indicating the correlation between CV and PRD. Considering that PRD is independent of neural rhythm generation, this result suggests the existence of feedback process from physical activities to neural rhythmic activities. Moreover, α differentiated obvious-PRD from mild-PRD. Considering α reflects the intensity of interaction between factors, this result suggests the change of the interaction. Therefore, the interaction between neural rhythmic and physical activities is thought to plays an important role for gait rhythm generation. These characteristics have potential to evaluate the symptoms of PD
    corecore