22 research outputs found

    In situ proliferation and differentiation of macrophages in dental pulp

    Get PDF
    The presence of macrophages in dental pulp is well known. However, whether these macrophages proliferate and differentiate in the dental pulp in situ, or whether they constantly migrate from the blood stream into the dental pulp remains unknown. We have examined and compared the development of dental pulp macrophages in an organ culture system with in vivo tooth organs to clarify the developmental mechanism of these macrophages. The first mandibular molar tooth organs from ICR mice aged between 16 days of gestation (E16) to 5 days postnatally were used for in vivo experiments. Those from E16 were cultured for up to 14 days with or without 10% fetal bovine serum. Dental pulp tissues were analyzed with immunohistochemistry to detect the macrophages and with reverse transcription and the polymerase chain reaction (RT-PCR) for the detection of factors related to macrophage development. The growth curves for the in vivo and in vitro cultured cells revealed similar numbers of F4/80-positive macrophages in the dental pulp. RT-PCR analysis indicated the constant expression of myeloid colony-stimulating factor (M-CSF) in both in-vivo- and in-vitro-cultured dental pulp tissues. Anti-M-CSF antibodies significantly inhibited the increase in the number of macrophages in the dental pulp. These results suggest that (1) most of the dental pulp macrophages proliferate and differentiate in the dental pulp without a supply of precursor cells from the blood stream, (2) M-CSF might be a candidate molecule for dental pulp macrophage development, and (3) serum factors might not directly affect the development of macrophages

    Symmetrical retrograde actin flow in the actin fusion structure is involved in osteoclast fusion

    No full text
    The aim of this study was to elucidate the role of the zipper-like structure (ZLS), a podosome-related structure that transiently appears at the cell contact zone, in osteoclast fusion. Live-cell imaging of osteoclasts derived from RAW264.7 cells transfected with EGFP-actin revealed consistent symmetrical retrograde actin flow in the ZLS, but not in the podosome cluster, the podosome ring or the podosome belt. Confocal imaging showed that the distributions of F-actin, vinculin, paxillin and zyxin in the ZLS were different from those in the podosome belt. Thick actin filament bundles running outside the ZLS appeared to recruit non-muscle myosin IIA. The F-actin-rich domain of the ZLS contained actin-related protein 2/3 complex (Arp2/3). Inhibition of Arp2/3 activity disorganized the ZLS, disrupted actin flow, deteriorated cell-cell adhesion and inhibited osteoclast hypermultinucleation. In contrast, ML-7, an inhibitor of myosin light chain kinase, had little effect on the structure of ZLS and promoted osteoclast hypermultinucleation. These results reveal a link between actin flow in the ZLS and osteoclast fusion. Osteoclast fusion was promoted by branched actin elongation and negatively regulated by actomyosin contraction

    Comprehensive genetic exploration of selective tooth agenesis of mandibular incisors by exome sequencing

    Get PDF
    Tooth agenesis is described as the absence of one or more teeth. It is caused by a failure in tooth development and is one of the most common human developmental anomalies. We herein report genomic analyses of selective mandibular incisor agenesis (SMIA) using exome sequencing. Two Japanese families with SMIA were subjected to exome sequencing, and family with sequence similarity 65 member A (FAM65), nuclear factor of activated T-cells 3 (NFATC3) and cadherin-related 23 gene (CDH23) were detected. In the follow-up study, 51 Japanese and 32 Korean sporadic patients with SMIA were subjected to exome analyses, and 18 reported variants in PAX9, AXIN2, EDA, EDAR, WNT10A, BMP2 and GREM2 and 27 variants of FAM65, NFATC3 and CDH23 were found in 38 patients. Our comprehensive genetic study of SMIA will pave the way for a full understanding of the genetic etiology of SMIA and provide targets for treatment

    Comparative Genomics and Drug Resistance of a Geographic Variant of ST239 Methicillin-Resistant Staphylococcus aureus Emerged in Russia

    Get PDF
    Two distinct classes of methicillin-resistant Staphylococcus aureus (MRSA) are spreading in hospitals (as hospital-acquired MRSA, HA-MRSA) and in the community (as community-acquired MRSA, CA-MRSA). Multilocus sequence type (ST) 239 MRSA, one of the most worldwide-disseminated lineages, has been noted as a representative HA-MRSA. Here, we isolated ST239 MRSA (spa type 3 [t037] and staphylococcal cassette chromosome mec [SCCmec] type III.1.1.1) and its novel variant with ST239/spa351 (t030)/SCCmecIII.1.1.4 (SCCmecIIIR) not only from hospitals but also from patients with urethritis in the community in Russia. The Russian variant (strain 16K) possessed a hybrid genome consisting of CC8 and CC30, similar to the ST239/spa3/SCCmecIII.1.1.1 HA-MRSA (TW20) genome, but with marked diversity. The 16K9 CC30 section had SCCmecIII R carrying the dcs-carrying unit (which corresponded to the SCCmecIVc J3 joining region of ST30 CA-MRSA), lacked SCCmercury, and possessed a novel mobile element structure (MES16K) carrying the ccrC-carrying unit (with the recombinase gene ccrC1 allele 3) and drug resistance tranposons. The Russian variant included strains with a high ability to transfer its multiple drug resistance by conjugation; e.g., for strain 16K, the transfer frequency of a chloramphenicol resistance plasmid (p16K-1 with 2.9 kb in size) reached 1.4610 22, followed by Tn554 conjugative transfer at 3.66l0 24. The Russian variant, which has been increasing recently, included divergent strains with different plasmid patterns and pulsed field gel electrophoresis profiles. The data demonstrate the alternative nature of ST239 MRSA as CA-MRSA and also as a dru
    corecore