115 research outputs found

    Telmisartan improves nonalcoholic steatohepatitis in medaka (Oryzias latipes) by reducing macrophage infiltration and fat accumulation

    Get PDF
    We investigated the efficacy of the antihypertensive drug telmisartan (Tel) and the mechanisms underlying the progression from simple steatosis to nonalcoholic steatohepatitis (NASH) in a medaka (Oryzias latipes) NASH model. We used the NASH activity score (NAS) developed in humans to assess the histology of the medaka NASH model and found that NAS increased with time. Further, TUNEL-positive apoptosis hepatocytes were found in the medaka NASH model. Tel administration resulted in the increased expression of liver peroxisome proliferator-activated receptor-γ, carnitine palmitoyltransferase 1 and acyl-CoA oxidase 1 and decreased the number of 8-hydroxydeoxyguanosine-positive hepatocytes and the migration of macrophages positive for diastase-periodic-acid-Schiff. Medaka NAS was improved by Tel administration but fatty acid content was not affected. Tel reduced the infiltration of macrophages into the liver and ameliorated NASH pathology

    Modulation of anti-cancer drug sensitivity through the regulation of mitochondrial activity by adenylate kinase 4

    Get PDF
    Background: Adenylate kinase is a key enzyme in the high-energy phosphoryl transfer reaction in living cells. An isoform of this enzyme, adenylate kinase 4 (AK4), is localized in the mitochondrial matrix and is believed to be involved in stress, drug resistance, malignant transformation in cancer, and ATP regulation. However, the molecular basis for the AK4 functions remained to be determined. Methods: HeLa cells were transiently transfected with an AK4 small interfering RNA (siRNA), an AK4 short hairpin RNA (shRNA) plasmid, a control shRNA plasmid, an AK4 expression vector, and a control expression vector to examine the effect of the AK4 expression on cell proliferation, sensitivity to anti-cancer drug, metabolome, gene expression, and mitochondrial activity. Results: AK4 knockdown cells treated with short hairpin RNA increased ATP production and showed greater sensitivity to hypoxia and anti-cancer drug, cis-diamminedichloro-platinum (II) (CDDP). Subcutaneous grafting AK4 knockdown cells into nude mice revealed that the grafted cells exhibited both slower proliferation and reduced the tumor sizes in response to CDDP. AK4 knockdown cell showed a increased oxygen consumption rate with FCCP treatment, while AK4 overexpression lowered it. Metabolome analysis showed the increased levels of the tricarboxylic acid cycle intermediates, fumarate and malate in AK4 knockdown cells, while AK4 overexpression lowered them. Electron microscopy detected the increased mitochondrial numbers in AK4 knockdown cells. Microarray analysis detected the increased gene expression of two key enzymes in TCA cycle, succinate dehydrogenase A (SDHA) and oxoglutarate dehydrogenease L (OGDHL), which are components of SDH complex and OGDH complex, supporting the metabolomic results. Conclusions: We found that AK4 was involved in hypoxia tolerance, resistance to anti-tumor drug, and the regulation of mitochondrial activity. These findings provide a new potential target for efficient anticancer therapies by controlling AK4 expression

    The fungal metabolite (+)-terrein abrogates osteoclast differentiation via suppression of the RANKL signaling pathway through NFATc1

    Get PDF
    Pathophysiological bone resorption is commonly associated with periodontal disease and involves the excessive resorption of bone matrix by activated osteoclasts. Receptor activator of nuclear factor (NF)-κB ligand (RANKL) signaling pathways have been proposed as targets for inhibiting osteoclast differentiation and bone resorption. The fungal secondary metabolite (+)-terrein is a natural compound derived from Aspergillus terreus that has previously shown anti-interleukin-6 properties related to inflammatory bone resorption. However, its effects and molecular mechanism of action on osteoclastogenesis and bone resorption remain unclear. In the present study, we showed that 10 µM synthetic (+)-terrein inhibited RANKL-induced osteoclast formation and bone resorption in a dose-dependent manner and without cytotoxicity. RANKL-induced messenger RNA expression of osteoclast-specific markers including nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), the master regulator of osteoclastogenesis, cathepsin K, tartrate-resistant acid phosphatase (Trap) was completely inhibited by synthetic (+)-terrein treatment. Furthermore, synthetic (+)-terrein decreased RANKL-induced NFATc1 protein expression. This study revealed that synthetic (+)-terrein attenuated osteoclast formation and bone resorption by mediating RANKL signaling pathways, especially NFATc1, and indicated the potential effect of (+)-terrein on inflammatory bone resorption including periodontal disease

    Chemical constituents of the leaves of rabbiteye blueberry (Vaccinium ashei) and characterisation of polymeric proanthocyanidins containing phenylpropanoid units and A-type linkages

    Get PDF
    Chemical constituents of the leaves of rabbiteye blueberry (Vaccinium ashei READE) were investigated in detail. The major phenolic components were caffeoyl quinic acids, flavonol glycosides, flavan-3-ols and proanthocyanidins. Catechins and proanthocyanidins having additional phenylpropanoid units, such as cinchonains, kandelins and mururins, characterised the polyphenols of this plant. Among them, vaccinin A, an isomer of mururin A, was found to be a new compound, and the structure was characterised by spectroscopic methods. The most abundant polyphenols (11.3% of freeze-dried leaves) were oligomeric proanthocyanidins. Thiol degradation with mercaptoethanol indicated that the polymer was constituted of (+)-catechin and (-)-epicatechin as the terminal units and (-)-epicatechin, procyanidin A-2, and cinchonains Ia and Ib as the extension units. Mass spectral analysis suggested the presence of at least dodecamers with A-type linkages and phenylpropanoid moieties
    corecore