287 research outputs found

    A Case of Meningococcal Meningitis in Tokyo and A Carrier Rate of Neisseria meningitidis in Those Close to The Patient.

    Get PDF
    Serogroup B Neisseria meningitidis was isolated from a 3-year-old girl with acute meningitis. The patient was completely recovered from the disease by the successful treatment by ampicillin and cefotaxime. From nasopharyngeal swab culture, N. meningitidis was isolated from her parents and 5 out of 93 pupils and kindergarten staff. The isolates from the parents were serogroup B and those from the pupils of the kindergarten were serogroup A. Since the mother of the patient reported an episode of common cold-like symptoms a few days before the patient\u27s illness, we speculate that the mother was the possible source of infection

    Recent Fusion Research in the National Institute for Fusion Science

    Get PDF
    The National Institute for Fusion Science (NIFS), which was established in 1989, promotes academic approaches toward the exploration of fusion science for steady-state helical reactor and realizes the establishment of a comprehensive understanding of toroidal plasmas as an inter-university research organization and a key center of worldwide fusion research. The Large Helical Device (LHD) Project, the Numerical Simulation Science Project, and the Fusion Engineering Project are organized for early realization of net current free fusion reactor, and their recent activities are described in this paper. The LHD has been producing high-performance plasmas comparable to those of large tokamaks, and several new findings with regard to plasma physics have been obtained. The numerical simulation science project contributes understanding and systemization of the physical mechanisms of plasma confinement in fusion plasmas and explores complexity science of a plasma for realization of the numerical test reactor. In the fusion engineering project, the design of the helical fusion reactor has progressed based on the development of superconducting coils, the blanket, fusion materials and tritium handling

    Assembly and Budding of Ebolavirus

    Get PDF
    Ebolavirus is responsible for highly lethal hemorrhagic fever. Like all viruses, it must reproduce its various components and assemble them in cells in order to reproduce infectious virions and perpetuate itself. To generate infectious Ebolavirus, a viral genome-protein complex called the nucleocapsid (NC) must be produced and transported to the cell surface, incorporated into virions, and then released from cells. To further our understanding of the Ebolavirus life cycle, we expressed the various viral proteins in mammalian cells and examined them ultrastructurally and biochemically. Expression of nucleoprotein alone led to the formation of helical tubes, which likely serve as a core for the NC. The matrix protein VP40 was found to be critical for transport of NCs to the cell surface and for the incorporation of NCs into virions, where interaction between nucleoprotein and the matrix protein VP40 is likely essential for these processes. Examination of virus-infected cells revealed that virions containing NCs mainly emerge horizontally from the cell surface, whereas empty virions mainly bud vertically, suggesting that horizontal budding is the major mode of Ebolavirus budding. These data form a foundation for the identification and development of potential antiviral agents to combat the devastating disease caused by this virus

    Design of a Closed Helical Divertor in LHD and the Prospect for Helical Fusion Reactors

    Get PDF
    A new closed helical divertor configuration for efficient particle control and reduction of the heat load on the divertor plates is proposed. The closed divertor configuration practically utilizes an ergodic layer and magnetic field line configuration on divertor legs in helical systems. For optimization of the design of the closed divertor, the distribution of the strike points is calculated in various magnetic configurations in the Large Helical Device (LHD). It suggests that the installation of the closed divertor components in the inboard side of the torus under an inward shift configuration (Rax=3.60m) is the best choice for achieving the above two purposes. This divertor configuration does not interfere with plasma heating and diagnostic systems installed in outer ports. The prospect of the closed divertor configuration to a helical fusion reactor is investigated using a three-dimensional neutral particle transport simulation code with a one-dimensional plasma fluid calculation on the divertor legs. The investigation shows efficient particle pumping from the in board side and reduction of the heat load due to the combined effect of the optimized closed divertor geometry, ergodized divertor legs, and low electron temperature in the ergodic layer. It indicates a promising closed divertor configuration for helical fusion reactors

    Feasibility of Reduced Tritium Circulation in the Heliotron Reactor by Enhancing Fusion Reactivity Using ICRF

    Get PDF
    A scheme for reducing the tritium fraction in DT fusion reactors is investigated by means of enhancing the fusion reactivity using high-power ICRF heating in heliotron reactors. We assume a situation that the density fraction of tritons is less than 10%, and the minority tritons are accelerated by ICRF waves. We then analyze the increase of fusion reactivity by assuming an effective temperature of high-energy tritons and examine the possibility of realizing a fusion reactor with this concept. The required ICRF power and the generated fusion power are also estimated

    Experimental Results for Electron Bernstein Wave Heating in the Large Helical Device

    Get PDF
    Electron cyclotron heating (ECH) using electron Bernstein waves (EBWs) was studied in the large helical device (LHD). Oblique launching of the slow extraordinary (SX-) mode from the high field side and oblique launching of the ordinary (O-) mode from the low field side were adopted to excite EBWs in the LHD by using electron cyclotron (EC) wave antennas installed apart from the plasma surface. Increases in the stored energy and electron temperature were observed for both cases of launching. These launching methods for ECH using EBWs (EBWH) is promising for high-density operation in future helical fusion devices instead of conventional ECH by normal electromagnetic modes

    Id2-, RORγt-, and LTβR-independent initiation of lymphoid organogenesis in ocular immunity

    Get PDF
    The eye is protected by the ocular immunosurveillance system. We show that tear duct–associated lymphoid tissue (TALT) is located in the mouse lacrimal sac and shares immunological characteristics with mucosa-associated lymphoid tissues (MALTs), including the presence of M cells and immunocompetent cells for antigen uptake and subsequent generation of mucosal immune responses against ocularly encountered antigens and bacteria such as Pseudomonas aeruginosa. Initiation of TALT genesis began postnatally; it occurred even in germ-free conditions and was independent of signaling through organogenesis regulators, including inhibitor of DNA binding/differentiation 2, retinoic acid–related orphan receptor γt, lymphotoxin (LT) α1β2–LTβR, and lymphoid chemokines (CCL19, CCL21, and CXCL13). Thus, TALT shares immunological features with MALT but has a distinct tissue genesis mechanism and plays a key role in ocular immunity
    corecore