77 research outputs found

    A human transporter protein that mediates the final excretion step for toxic organic cations

    Get PDF
    In mammals, toxic electrolytes of endogenous and exogenous origin are excreted through the urine and bile. Before excretion, these compounds cross numerous cellular membranes in a transporter-mediated manner. However, the protein transporters involved in the final excretion step are poorly understood. Here, we show that MATE1, a human and mouse orthologue of the multidrug and toxin extrusion (MATE) family conferring multidrug resistance on bacteria, is primarily expressed in the kidney and liver, where it is localized to the luminal membranes of the urinary tubules and bile canaliculi. When expressed in HEK293 cells, MATE1 mediates H+-coupled electroneutral exchange of tetraethylammonium (TEA) and 1-methyl-4-phenylpyridinium (MPP). Its substrate specificity is similar to those of renal and hepatic H+-coupled organic cations (OCs) export. Thus, MATE1 appears to be the long searched for polyspecific OC exporter that directly transports toxic OCs into urine and bile.</p

    Involvement of the leaf-specific multidrug and toxic compound extrusion (MATE) transporter Nt-JAT2 in vacuolar sequestration of nicotine in Nicotiana tabacum

    Get PDF
    Alkaloids play a key role in higher plant defense against pathogens and herbivores. Following its biosynthesis in root tissues, nicotine, the major alkaloid of Nicotiana species, is translocated via xylem transport toward the accumulation sites, leaf vacuoles. Our transcriptome analysis of methyl jasmonate-treated tobacco BY-2 cells identified several multidrug and toxic compound extrusion (MATE) transporter genes. In this study, we characterized a MATE gene, Nicotiana tabacum jasmonate-inducible alkaloid transporter 2 (Nt-JAT2), which encodes a protein that has 32% amino acid identity with Nt-JAT1. Nt-JAT2 mRNA is expressed at a very low steady state level in whole plants, but is rapidly upregulated by methyl jasmonate treatment in a leaf-specific manner. To characterize the function of Nt-JAT2, yeast cells were used as the host organism in a cellular transport assay. Nt-JAT2 was localized at the plasma membrane in yeast cells. When incubated in nicotine-containing medium, the nicotine content in Nt-JAT2-expressing cells was significantly lower than in control yeast. Nt-JAT2-expressing cells also showed lower content of other alkaloids like anabasine and anatabine, but not of flavonoids, suggesting that Nt-JAT2 transports various alkaloids including nicotine. Fluorescence assays in BY-2 cells showed that Nt-JAT2-GFP was localized to the tonoplast. These findings indicate that Nt-JAT2 is involved in nicotine sequestration in leaf vacuoles following the translocation of nicotine from root tissues

    Positive Regulation of S-Adenosylmethionine on Chondrocytic Differentiation via Stimulation of Polyamine Production and the Gene Expression of Chondrogenic Differentiation Factors

    Get PDF
    S-adenosylmethionine (SAM) is considered to be a useful therapeutic agent for degenerative cartilage diseases, although its mechanism is not clear. We previously found that polyamines stimulate the expression of differentiated phenotype of chondrocytes. We also found that the cellular communication network factor 2 (CCN2) played a huge role in the proliferation and differentiation of chondrocytes. Therefore, we hypothesized that polyamines and CCN2 could be involved in the chondroprotective action of SAM. In this study, we initially found that exogenous SAM enhanced proteoglycan production but not cell proliferation in human chondrocyte-like cell line-2/8 (HCS-2/8) cells. Moreover, SAM enhanced gene expression of cartilage-specific matrix (aggrecan and type II collagen), Sry-Box transcription factor 9 (SOX9), CCN2, and chondroitin sulfate biosynthetic enzymes. The blockade of the methionine adenosyltransferase 2A (MAT2A) enzyme catalyzing intracellular SAM biosynthesis restrained the effect of SAM on chondrocytes. The polyamine level in chondrocytes was higher in SAM-treated culture than control culture. Additionally, Alcian blue staining and RT-qPCR indicated that the effects of SAM on the production and gene expression of aggrecan were reduced by the inhibition of polyamine synthesis. These results suggest that the stimulation of polyamine synthesis and gene expression of chondrogenic differentiation factors, such as CCN2, account for the mechanism underlying the action of SAM on chondrocytes

    Identification of a mammalian vesicular polyamine transporter

    Get PDF
    Spermine and spermidine act as neuromodulators upon binding to the extracellular site(s) of various ionotropic receptors, such as N-methyl-d-aspartate receptors. To gain access to the receptors, polyamines synthesized in neurons and astrocytes are stored in secretory vesicles and released upon depolarization. Although vesicular storage is mediated in an ATP-dependent, reserpine-sensitive fashion, the transporter responsible for this process remains unknown. SLC18B1 is the fourth member of the SLC18 transporter family, which includes vesicular monoamine transporters and vesicular acetylcholine transporter. Proteoliposomes containing purified human SLC18B1 protein actively transport spermine and spermidine by exchange of H+. SLC18B1 protein is predominantly expressed in the hippocampus and is associated with vesicles in astrocytes. SLC18B1 gene knockdown decreased both SLC18B1 protein and spermine/spermidine contents in astrocytes. These results indicated that SLC18B1 encodes a vesicular polyamine transporter (VPAT)

    Continuous Limit of Multiple Lens Effect and the Optical Scalar Equation

    Full text link
    We study the continuous limit of the multiple gravitational lensing theory based on the thin lens approximation. Under the approximation, we define a new, light-path dependent angular diameter distance d~\tilde{d} and show that it satisfies the optical scalar equation. The distance provides relations between quantities used in the gravitational lensing theory (the convergence-, the shear- and the twist-term) and those used in the scalar optics theory (the rates of expansion, shear and rotation).Comment: 20 page

    AtPHT4;4 is a chloroplast-localized ascorbate transporter in Arabidopsis

    Get PDF
    Ascorbate is an antioxidant and coenzyme for various metabolic reactions in vivo. In plant chloroplasts, high ascorbate levels are required to overcome photoinhibition caused by strong light. However, ascorbate is synthesized in the mitochondria and the molecular mechanisms underlying ascorbate transport into chloroplasts are unknown. Here we show that AtPHT4;4, a member of the phosphate transporter 4 family of Arabidopsis thaliana, functions as an ascorbate transporter. In vitro analysis shows that proteoliposomes containing the purified AtPHT4;4 protein exhibit membrane potential- and Cl-dependent ascorbate uptake. The AtPHT4;4 protein is abundantly expressed in the chloroplast envelope membrane. Knockout of AtPHT4;4 results in decreased levels of the reduced form of ascorbate in the leaves and the heat dissipation process of excessive energy during photosynthesis is compromised. Taken together, these observations indicate that the AtPHT4;4 protein is an ascorbate transporter at the chloroplast envelope membrane, which may be required for tolerance to strong light stress

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection
    corecore