21 research outputs found

    Catalytic role of the calcium ion in GH97 inverting glycoside hydrolase

    Get PDF
    AbstractThe role of calcium ion in the active site of the inverting glycoside hydrolase family 97 enzyme, BtGH97a, was investigated through structural and kinetic studies. The calcium ion was likely directly involved in the catalytic reaction. The pH dependence of kcat/Km values in the presence or absence of calcium ion indicated that the calcium ion lowered the pKa of the base catalyst. The significant decreases in kcat/Km for hydrolysis of substrates with basic leaving groups in the absence of calcium ion confirmed that the calcium ion facilitated the leaving group departure

    Precipitant-Free Lysozyme Crystals Grown by Centrifugal Concentration Reveal Structural Changes

    Get PDF
    The three-dimensional (3D) structure of a protein molecule in its crystal need not correspond to that found in vivo in many cases, since we usually crystallize protein molecules using precipitants (salts, organic solvents, polymeric electrolytes, etc.), and the precipitants are often incorporated into crystals along with the protein molecules. Although precipitant-free crystallization methods would solve these problems, such methods had not yet been established. We have achieved a novel precipitant-free crystallization method by liquid-liquid phase separation during the centrifugal concentration of lysozyme in ultra-pure water. In the 3D structure of the precipitant-free crystal, lysozyme loses a sodium cation and changes the position of Ser 72. Deionization of the solution also appears to induce a change in the position of Asp 101 and an increase in the activity of lysozyme

    Polymorphism of edible fat crystals

    No full text

    Calcium ion-dependent increase in thermostability of dextran glucosidase from Streptococcus mutans.

    Get PDF
    Dextran glucosidase from Streptococcus mutans (SmDG), which belongs to glycoside hydrolase family 13 (GH13), hydrolyzes the non-reducing terminal glucosidic linkage of isomaltooligosaccharides and dextran. Thermal deactivation of SmDG did not follow the single exponential decay but rather the two-step irreversible deactivation model, which involves an active intermediate having 39% specific activity. The presence of a low concentration of CaCl2 increased the thermostability of SmDG, mainly due to a marked reduction in the rate constant of deactivation of the intermediate. The addition of MgCl2 also enhanced thermostability, while KCl and NaCl were not effective. Therefore, divalent cations, particularly Ca2+, were considered to stabilize SmDG. On the other hand, CaCl2 had no significant effect on catalytic reaction. The enhanced stability by Ca2+ was probably related to calcium binding in the β→α loop 1 of the (β/α)(8) barrel of SmDG. Because similar structures and sequences are widespread in GH13, these GH13 enzymes might have been stabilized by calcium ions

    Structural elements responsible for the glucosidic linkage-selectivity of a glycoside hydrolase family 13 exo-glucosidase

    Get PDF
    Glycoside hydrolase family 13 contains exo-glucosidases specific for alpha-(1 -> 4)- and alpha-(1 -> 6)-linkages including alpha-glucosidase, oligo-1,6-glucosidase, and dextran glucosidase. The alpha-(1 -> 6)-linkage selectivity of Streptococcus mutans dextran glucosidase was altered to alpha-(1 -> 4)-linkage selectivity through site-directed mutations at Val195, Lys275, and Glu371. V195A showed 1300-fold higher k(cat)/K-m for maltose than wild-type, but its k(cat)/K-m for isomaltose remained 2-fold higher than for maltose. K275A and E371A combined with V195A mutation only decreased isomaltase activity. V195A/K275A, V195A/E371A, and V195A/K275A/E371A showed 27-, 26-, and 73-fold higher k(cat)/K-m for maltose than for isomaltose, respectively. Consequently, the three residues are structural elements for recognition of the alpha-(1 -> 6)-glucosidic linkage. (C) 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved

    Epitaxial Growth of Fat Crystals on Emulsifier Crystals with Different Fatty Acid Moieties

    No full text
    We performed in situ observations of the crystallization and melting behaviors of palm mid fraction (PMF) on sorbitan ester (SE) crystals comprising different fatty acid moieties (sorbitan tripalmitate (STP), sorbitan tristearate (STS), or sorbitan tribehenate (STB)) to reveal the epitaxial relationship between fat crystals and emulsifier crystals. The effects of SEs on the thermal behavior and polymorphism of PMF were investigated by differential scanning calorimetry and synchrotron radiation X-ray diffraction. These measurements showed that the addition of STP and STS greatly increased the crystallization temperature of PMF, which was caused by the crystallized SEs that were nucleated prior to PMF. Microscopic observations demonstrated that PMF crystals were oriented in the same direction as crystals of STP and STS because the chain lengths of the fatty acid moieties were similar to those of PMF. In contrast, when STB was used as a substrate, PMF crystals were not oriented in the same direction as STB crystals because there is a large difference between the chain lengths of STB and PMF. These results revealed that crystal growth of PMF on STP and STS crystals occurs via epitaxial growth, whereas PMF crystallization on STB crystals occurs via general heterogeneous nucleation

    Kinetic Study on Alpha-Form Crystallization of Mixed-Acid Triacylglycerols POP, PPO, and Their Mixture

    No full text
    The crystallization behavior of the metastable α form of triacylglycerols (TAGs) plays a critical role as a precursor for the crystallization of more stable β′ and β forms for various applications in food and pharmaceutical products. However, precise analysis of the crystallization kinetics of α has not been performed, likely due to its rapid and complex behavior. This paper presents the observation results of the initial stages of the isothermal crystallization kinetics of α forms of 1,3-dipalmitoyl-2-oleoyl-glycerol (POP), 1,2-dipalmitoyl-3-oleoyl-rac-glycerol (rac-PPO), and molecular compound (MC) crystals of a POP/rac-PPO (1/1) mixture (MCPOP/PPO) using synchrotron radiation time-resolved X-ray diffraction and polarized optical microscopy. In all the TAGs, α crystals with a worm-like morphology started to grow rapidly in the first stage. Then, the α crystals slowly transformed into more stable forms in different manners for different TAG samples. In POP, the conversion was simple, as the α-2 form transformed into γ-3, whereas in rac-PPO, the lamellar distance values of the α-2 form continuously decreased with time and changed into the α-3 form. In the MCPOP/PPO crystals, in contrast, separate crystallization of α-2 of a rac-PPO fraction initially occurred, followed by the crystallization of α-2 of POP, and the two α forms merged into α-2 of MCPOP/PPO. This separate crystallization was caused by large differences in the crystallization kinetics of the α forms of POP and rac-PPO

    Multiple β Forms of Saturated Monoacid Triacylglycerol Crystals

    No full text
    We have investigated the polymorphism of triacylglycerol (TAG) crystals as they affect the qualities such as shelf life, mouth feel, and texture of chocolate and other products. Saturated monoacid TAGs, like trilaurin, are considered as models for TAG crystallization; however, there is still debate about the number of their polymorphs that exist. In this study, we characterized a set of novel polymorphs, β forms of saturated monoacid TAGs, which were obtained via different pathways depending on the crystallization history, by polarized light microscopy, X-ray diffraction, and differential scanning calorimetry. Saturated monoacid TAGs were crystallized as the unstable polymorphs, the α or β’ forms first, and then they were transformed into β forms by solid–solid transformations. The β form that had transformed from β’ changed its morphology by a polymorphic transformation, while the β form made from the α form kept its spherulite morphology. The β forms obtained showed different melting points. Additional heat treatment promoted further polymorphic transformation. Four novel β forms were found for each of the saturated monoacid TAGs, trilaurin, trimyristin, tripalmitin, and tristearin. They showed similar polymorphism with the same subcell packing
    corecore