74 research outputs found

    Carcinogenesis in Mouse Stomach by Simultaneous Activation of the Wnt Signaling and Prostaglandin E2 Pathway

    Get PDF
    金沢大学がん研究所附属がん幹細胞研究センター Background & Aims: Accumulating evidence indicates that prostaglandin E2 (PGE2), a downstream product of cyclooxygenase 2 (COX-2), plays a key role in gastric tumorigenesis. The Wnt pathway is also suggested to play a causal role in gastric carcinogenesis. However, the molecular mechanism remains poorly understood of how the Wnt and PGE2 pathways contribute to gastric tumorigenesis. To investigate the role of Wnt and PGE2 in gastric cancer, we have generated transgenic mice that activate both pathways and examined their phenotypes. Methods: We constructed K19-Wnt1 transgenic mice expressing Wnt1 in the gastric mucosa using the keratin 19 promoter. We then crossed K19-Wnt1 mice with another transgenic line, K19-C2mE, to obtain K19-Wnt1/C2mE compound transgenic mice. The K19-C2mE mice express COX-2 and microsomal prostaglandin E synthase-1 (mPGES-1) in the stomach, showing an increased gastric PGE2 level. We examined the gastric phenotypes of both K19-Wnt1 and K19-Wnt1/C2mE mice. Results: K19-Wnt1 mice had a significant suppression of epithelial differentiation and developed small preneoplastic lesions consisting of undifferentiated epithelial cells with macrophage accumulation. Importantly, additional expression of COX-2 and mPGES-1 converted the preneoplastic lesions in the K19-Wnt1 mice into dysplastic gastric tumors by 20 weeks of age. Notably, we found mucous cell metaplasia in the glandular stomach of the K19-Wnt1/C2mE mice as early as 5 weeks of age, before the dysplastic tumor development. Conclusions: Wnt signaling keeps the gastric progenitor cells undifferentiated. Simultaneous activation of both Wnt and PGE2 pathways causes dysplastic gastric tumors through the metaplasia-carcinoma sequence. © 2006 American Gastroenterological Association (AGA) Institute

    Differential remodelling of peroxisome function underpins the environmental and metabolic adaptability of diplonemids and kinetoplastids

    Get PDF
    The remodelling of organelle function is increasingly appreciated as a central driver of eukaryotic biodiversity and evolution. Kinetoplastids including Trypanosoma and Leishmania have evolved specialized peroxisomes, called glycosomes. Glycosomes uniquely contain a glycolytic pathway as well as other enzymes, which underpin the physiological flexibility of these major human pathogens. The sister group of kinetoplastids are the diplonemids, which are among the most abundant eukaryotes in marine plankton. Here we demonstrate the compartmentalization of gluconeogenesis, or glycolysis in reverse, in the peroxisomes of the free-living marine diplonemid, Diplonema papillatum. Our results suggest that peroxisome modification was already under way in the common ancestor of kinetoplastids and diplonemids, and raise the possibility that the central importance of gluconeogenesis to carbon metabolism in the heterotrophic free-living ancestor may have been an important selective driver. Our data indicate that peroxisome modification is not confined to the kinetoplastid lineage, but has also been a factor in the success of their free-living euglenozoan relatives

    Induction and Down-regulation of Sox17 and Its Possible Roles During the Course of Gastrointestinal Tumorigenesis

    Get PDF
    金沢大学がん研究所がん幹細胞研究センターBackground & Aims: The activation of Wnt/ホイ-catenin signaling causes the development of gastric and colon cancers. Sox17 represses Wnt/ホイ-catenin signaling and is down-regulated in colon cancer. This study was designed to elucidate the role of Sox17 during the course of gastrointestinal tumorigenesis. Methods: Sox17 expression was examined in gastrointestinal tumors of mouse models and humans. The roles of Sox17 in gastric tumorigenesis were examined by cell culture experiments and by construction of Sox17 transgenic mice. Results: Sox17 was induced in K19-Wnt1/C2mE mouse gastric tumors and K19-Wnt1 preneoplastic lesions, where Wnt/ホイ-catenin signaling was activated. Consistently, Wnt activation induced Sox17 expression in gastric cancer cells. In contrast, Sox17 was rarely detected by immunohistochemistry in gastric and colon cancers, whereas strong nuclear staining of Sox17 was found in >70% of benign gastric and intestinal tumors. Treatment with a demethylating agent induced Sox17 expression in gastric cancer cells, thus indicating the down-regulation of Sox17 by methylation. Moreover, transfection of Sox17 in gastric cancer cells suppressed both the Wnt activity and colony formation efficiency. Finally, transgenic expression of Sox17 suppressed dysplastic tumor development in K19-Wnt1/C2mE mouse stomach. Conclusions: Sox17 plays a tumor suppressor role through suppression of Wnt signaling. However, Sox17 is induced by Wnt activation in the early stage of gastrointestinal tumorigenesis, and Sox17 is down-regulated by methylation during malignant progression. It is therefore conceivable that Sox17 protects benign tumors from malignant progression at an early stage of tumorigenesis, and down-regulation of Sox17 contributes to malignant progression through promotion of Wnt activity. © 2009 AGA Institute

    Inflammation-induced repression of tumor suppressor miR-7 in gastric tumor cells

    Get PDF
    Inflammation has an important role in cancer development through various mechanisms. It has been shown that dysregulation of microRNAs (miRNAs) that function as oncogenes or tumor suppressors contributes to tumorigenesis. However, the relationship between inflammation and cancer-related miRNA expression in tumorigenesis has not yet been fully understood. Using K19-C2mE and Gan mouse models that develop gastritis and gastritis-associated tumors, respectively, we found that 21 miRNAs were upregulated, and that 29 miRNAs were downregulated in gastric tumors in an inflammation-dependent manner. Among these miRNAs, the expression of miR-7, a possible tumor suppressor, significantly decreased in both gastritis and gastric tumors. Moreover, the expression of miR-7 in human gastric cancer was inversely correlated with the levels of interleukin-1Β and tumor necrosis factor-α, suggesting that miR-7 downregulation is related to the severity of inflammatory responses. In the normal mouse stomach, miR-7 expression was at a basal level in undifferentiated gastric epithelial cells, and was induced during differentiation. Moreover, transfection of a miR-7 precursor into gastric cancer cells suppressed cell proliferation and soft agar colony formation. These results suggest that suppression of miR-7 expression is important for maintaining the undifferentiated status of gastric epithelial cells, and thus contributes to gastric tumorigenesis. Although epigenetic changes were not found in the CpG islands around miR-7-1 of gastritis and gastric tumor cells, we found that activated macrophage-derived small molecule(s) (<3 kDa) are responsible for miR-7 repression in gastric cancer cells. Furthermore, the miR-7 expression level significantly decreased in the inflamed gastric mucosa of Helicobacter-infected mice, whereas it increased in the stomach of germfree K19-C2mE and Gan mice wherein inflammatory responses were suppressed. Taken together, these results indicate that downregulation of tumor suppressor miR-7 is a novel mechanism by which the inflammatory response promotes gastric tumorigenesis. © 2012 Macmillan Publishers Limited. All rights reserved

    Effectiveness of COVID-19 vaccination in healthcare workers in Shiga Prefecture, Japan

    Get PDF
    This study, which included serological and cellular immunity tests, evaluated whether coronavirus disease 2019 (COVID-19) vaccination adequately protected healthcare workers (HCWs) from COVID-19. Serological investigations were conducted among 1600 HCWs (mean ± standard deviation, 7.4 ± 1.4 months after the last COVID-19 vaccination). Anti-SARS-CoV-2 antibodies N-Ig, Spike-Ig (Roche), N-IgG, Spike-IgM, and -IgG (Abbott), were evaluated using a questionnaire of health condition. 161 HCWs were analyzed for cellular immunity using T-SPOT® SARS-CoV-2 kit before, and 52 HCWs were followed up until 138.3 ± 15.7 days after their third vaccination. Spike-IgG value was 954.4 ± 2282.6 AU/mL. Forty-nine of the 1600 HCWs (3.06%) had pre-existing SARS-CoV-2 infection. None of the infectious seropositive HCWs required hospitalization. T-SPOT value was 85.0 ± 84.2 SFU/106 cells before the third vaccination, which increased to 219.4 ± 230.4 SFU/106 cells immediately after, but attenuated later (to 111.1 ± 133.6 SFU/106 cells). Poor counts (< 40 SFU/106 cells) were present in 34.8% and 38.5% of HCWs before and after the third vaccination, respectively. Our findings provide insights into humoral and cellular immune responses to repeated COVID-19 vaccinations. COVID-19 vaccination was effective in protecting HCWs from serious illness during the original Wuhan-1, Alpha, Delta and also ongoing Omicron-predominance periods. However, repeated vaccinations using current vaccine versions may not induce sufficient cellular immunity in all HCWs
    corecore