22 research outputs found

    Knockout crickets for the study of learning and memory : Dopamine receptor Dop1 mediates aversive but not appetitive reinforcement in crickets

    Get PDF
    Elucidation of reinforcement mechanisms in associative learning is an important subject in neuroscience. In mammals, dopamine neurons are thought to play critical roles in mediating both appetitive and aversive reinforcement. Our pharmacological studies suggested that octopamine and dopamine neurons mediate reward and punishment, respectively, in crickets, but recent studies in fruit-flies concluded that dopamine neurons mediates both reward and punishment, via the type 1 dopamine receptor Dop1. To resolve the discrepancy between studies in different insect species, we produced Dop1 knockout crickets using the CRISPR/Cas9 system and found that they are defective in aversive learning with sodium chloride punishment but not appetitive learning with water or sucrose reward. The results suggest that dopamine and octopamine neurons mediate aversive and appetitive reinforcement, respectively, in crickets. We suggest unexpected diversity in neurotransmitters mediating appetitive reinforcement between crickets and fruit-flies, although the neurotransmitter mediating aversive reinforcement is conserved. This study demonstrates usefulness of the CRISPR/Cas9 system for producing knockout animals for the study of learning and memory

    中生動物ニハイチュウの体細胞分化に伴うミトコンドリア及び核ゲノムの再編成

    Get PDF
    取得学位:博士(理学),学位授与番号:博甲第800号,学位授与年月日:平成18年3月22日,学位授与年:200

    Rough eyes of the Northeast-Asian wood white, Leptidea amurensis

    Get PDF
    The Northeast-Asian Wood White Leptidea amurensis (Lepidoptera, Pieridae) belongs to Dismorphiinae, a subfamily of the family Pieridae. We here studied the structure of the compound eye in this species through a combination of anatomy, molecular biology and intracellular electrophysiology, with a particular focus on the evolution of butterfly eyes. We found that their eyes consist of three types of ommatidia, with a basic set of one short, one middle and one long wavelength-absorbing visual pigment. The spectral sensitivities of the photoreceptors are rather simple, and peak in the ultraviolet, blue and green wavelength regions. The ommatidia have neither perirhabdomal nor fluorescent pigments, which modulate photoreceptor spectral sensitivities in a number of other butterfly species. These features are primitive, but the eyes of Leptidea exhibit another unique feature: the rough appearance of the ventral two-thirds of the eye. The roughness is due to the irregular distribution of facets of two distinct sizes. As this phenomenon exists only in males, it may represent a newly evolved sex-related feature

    Eyes with basic dorsal and specific ventral regions in the glacial Apollo, Parnassius glacialis (Papilionidae)

    Get PDF
    Recent studies on butterflies have indicated that their colour vision system is almost species specific. To address the question of how this remarkable diversity evolved, we investigated the eyes of the glacial Apollo, Parnassius glacialis, a living fossil species belonging to the family Papilionidae. We identified four opsins in the Parnassius eyes – an ultraviolet- (PgUV), a blue- (PgB), and two long wavelength (PgL2, PgL3)-absorbing types – and localized their mRNAs within the retina. We thus found ommatidial heterogeneity and a clear dorso-ventral regionalization of the eye. The dorsal region consists of three basic types of ommatidia that are similar to those found in other insects, indicating that this dorsal region retains the ancestral state. In the ventral region, we identified two novel phenomena: co-expression of the opsins of the UV- and B-absorbing type in a subset of photoreceptors, and subfunctionalization of long-wavelength receptors in the distal tier as a result of differential expression of the PgL2 and PgL3 mRNAs. Interestingly, butterflies from the closely related genus Papilio (Papilionidae) have at least three long-wavelength opsins, L1–L3. The present study indicates that the duplication of L2 and L3 occurred before the Papilio lineage diverged from the rest, whereas L1 was produced from L3 in the Papilio lineage

    Roles of OA1 octopamine receptor and Dop1 dopamine receptor in mediating appetitive and aversive reinforcement revealed by RNAi studies

    Get PDF
    Revealing reinforcing mechanisms in associative learning is important for elucidation of brain mechanisms of behavior. In mammals, dopamine neurons are thought to mediate both appetitive and aversive reinforcement signals. Studies using transgenic fruit-flies suggested that dopamine neurons mediate both appetitive and aversive reinforcements, through the Dop1 dopamine receptor, but our studies using octopamine and dopamine receptor antagonists and using Dop1 knockout crickets suggested that octopamine neurons mediate appetitive reinforcement and dopamine neurons mediate aversive reinforcement in associative learning in crickets. To fully resolve this issue, we examined the effects of silencing of expression of genes that code the OA1 octopamine receptor and Dop1 and Dop2 dopamine receptors by RNAi in crickets. OA1-silenced crickets exhibited impairment in appetitive learning with water but not in aversive learning with sodium chloride solution, while Dop1-silenced crickets exhibited impairment in aversive learning but not in appetitive learning. Dop2-silenced crickets showed normal scores in both appetitive learning and aversive learning. The results indicate that octopamine neurons mediate appetitive reinforcement via OA1 and that dopamine neurons mediate aversive reinforcement via Dop1 in crickets, providing decisive evidence that neurotransmitters and receptors that mediate appetitive reinforcement indeed differ among different species of insects

    Variantes genéticas en el locus 9p21 contribuyen al desarrollo de arteriosclerosis a través de la modulación de ANRIL y CDKN2A/B

    Get PDF
    Registro creado en correspondencia al grado de doctora de Ada Congrains Castillo.Los estudios de asociación de todo el genoma (GWAS) han identificado variantes genéticas que contribuyen al riesgo de enfermedad cardiovascular (ECV) en el locus del cromosoma 9p21. La región asociada a CVD es adyacente a los dos inhibidores de quinasas dependientes de ciclina (CDKN) 2A y 2B y los últimos exones del ARN no codificante, ANRIL. Todavía no está claro cuál de estas transcripciones o cómo están involucradas en la patogénesis de la aterosclerosis.Genome-wide association studies (GWAS) have identified genetic variants contributing to the risk of cardiovascular disease (CVD) at the chromosome 9p21 locus. The CVD-associated region is adjacent to the two cyclin dependent kinase inhibitors (CDKN)2A and 2B and the last exons of the non-coding RNA, ANRIL. It is still not clear which of or how these transcripts are involved in the pathogenesis of atherosclerosis.Japón. Programa de Promoción de Estudios Fundamentales en el Instituto Nacional de Innovación Biomédica de Japón (HR: 22-2-5), el Ministerio de Educación, Cultura, Deportes, Ciencia y Tecnología de Japón (KK: 22510211) y la Fundación NOVARTIS para la Investigación Gerontológica (KK).Tesi

    Knockout crickets for the study of learning and memory: Dopamine receptor Dop1 mediates aversive but not appetitive reinforcement in crickets

    Get PDF
    Elucidation of reinforcement mechanisms in associative learning is an important subject in neuroscience. In mammals, dopamine neurons are thought to play critical roles in mediating both appetitive and aversive reinforcement. Our pharmacological studies suggested that octopamine and dopamine neurons mediate reward and punishment, respectively, in crickets, but recent studies in fruit-flies concluded that dopamine neurons mediates both reward and punishment, via the type 1 dopamine receptor Dop1. To resolve the discrepancy between studies in different insect species, we produced Dop1 knockout crickets using the CRISPR/Cas9 system and found that they are defective in aversive learning with sodium chloride punishment but not appetitive learning with water or sucrose reward. The results suggest that dopamine and octopamine neurons mediate aversive and appetitive reinforcement, respectively, in crickets. We suggest unexpected diversity in neurotransmitters mediating appetitive reinforcement between crickets and fruit-flies, although the neurotransmitter mediating aversive reinforcement is conserved. This study demonstrates usefulness of the CRISPR/Cas9 system for producing knockout animals for the study of learning and memory

    Peculiar behavior of distinct chromosomal DNA elements during and after development in the dicyemid mesozoan Dicyema japonicum

    No full text
    The dicyemid mesozoans are obligate parasites that inhabit the cephalopod renal appendage. Dicyemids have a simple body, consisting of approximately 30 cells: one long cylindrical axial cell contains intracellular stem cells (called axoblast), from which embryos are derived, and is surrounded by some 30 peripheral somatic cells. Somatic cells divide at most eight times in their life span, and never divide after differentiation. During early somatic cell development, numerous unique DNA sequences are first amplified and then eliminated, in the form of extrachromosomal circular DNA, leading to genome reduction. In this study we demonstrate that the remaining sequences, single-copy genes and repetitive sequences, have very different fates. Single-copy genes, such as β-tubulin, are initially amplified, presumably via endoreduplication, but subsequently decrease in copy number through development, suggesting that the whole genome is initially amplified and then the amplified DNAs are simply diluted in successive cell divisions, with little DNA replication. In contrast, repetitive sequences are maintained even in terminally differentiated somatic cell nuclei. Considering the increasing intensity of in-situ hybridization, incorporation of BrdU, and a general correlation between nuclear content and cell size, those repetitive sequences must be selectively endoreplicated in the peripheral cell nucleus, concomitant with the increase of cell size. The biological significance of this mechanism is discussed as a unique dicyemid adaptation to parasitism

    Differentiation of somatic mitochondria and the structural changes in mtDNA during development of the dicyemid Dicyema japonicum (Mesozoa)

    No full text
    Dicyemids (Mesozoa) are extremely simple multicellular parasites found in the kidneys of cephalopods. Their mitochondria are known to contain single-gene minicircle DNAs. However, it is not known if the minicircles represent the sole form of mitochondrial genome in these organisms. Here we demonstrate that high-molecular-weight (HMW) mtDNA is present in dicyemids. This form of mtDNA is probably limited to germ cells, and has been analyzed by PCR and Southern hybridization. In situ hybridization revealed that mtDNA is initially amplified during early embryogenesis, and then gradually decreases in copy number as larval development proceeds. Furthermore, we demonstrated using BrdU as a tracer that many of the mitochondria in terminally differentiated somatic cells no longer support DNA synthesis. Taking these observations into account, we propose an “amplification-dilution” model for mesozoan mtDNA. “Stem” mitochondria in the germ cells (1) amplify the HMW form of mtDNA in early embryos, followed by minicircle formation via DNA rearrangement, or (2) selectively replicate minicircles from the HMW DNA, concomitantly with the differentiation of the soma. Minicircle formation may itself lead to the loss of replication origins. Thereafter, the minicircles are simply distributed to daughter mitochondria without replication, resulting in the “somatic” mitochondria, which have lost the replicative form of the HMW mtDNA. The change in mtDNA configuration is discussed in relation to mitochondrial differentiation
    corecore