21 research outputs found

    Transient and local weakening of surface winds observed above the Kuroshio front in the winter East China Sea

    Get PDF
    To confirm whether surface winds strengthen above warm waters around oceanic fronts using in situ data, a field measurement was conducted using both expendable bathythermographs and Global Positioning System sondes released concurrently across the Kuroshio front in the East China Sea in December 2010. In contrast to previous studies mainly based on satellite observations, the finding of the present field survey is the local weakening of surface winds at the northern flank of the Kuroshio front. From the above field observation in conjunction with a regional numerical model experiment, it is suggested that the northwesterly winds crossing the Kuroshio front from the cooler side first weaken at the northern flank of the front because of the onset of upward transfer of the "nonslip" condition at the sea surface. Thereafter, as the atmospheric mixed layer with warm and humid air mass develops gradually downwind over the Kuroshio region, the surface winds are gradually accelerated by the momentum mixing with strong winds aloft. The surface winds remain strong over the cool East China Sea shelf, and it is thus considered that the surface winds only weaken at the northern flank of the Kuroshio front. However, numerical modeling indicates that this local weakening of the surface winds occurs as a transient state with a short duration and such a structure has thus rarely been detected in the long-term averaged wind fields observed by satellites. Key Points An XBT/GPS sonde observation was conducted across the Kuroshio front Local weakening of surface winds was found just above the Kuroshio front The weakening occurs at the onset of cross-frontal winds transientl

    Real-time observation of X-ray-induced intramolecular and interatomic electronic decay in CH2I2

    Get PDF
    The increasing availability of X-ray free-electron lasers (XFELs) has catalyzed the development of single-object structural determination and of structural dynamics tracking in realtime. Disentangling the molecular-level reactions triggered by the interaction with an XFEL pulse is a fundamental step towards developing such applications. Here we report real-time observations of XFEL-induced electronic decay via short-lived transient electronic states in the diiodomethane molecule, using a femtosecond near-infrared probe laser. We determine the lifetimes of the transient states populated during the XFEL-induced Auger cascades and find that multiply charged iodine ions are issued from short-lived (similar to 20 fs) transient states, whereas the singly charged ones originate from significantly longer-lived states (similar to 100 fs). We identify the mechanisms behind these different time scales: contrary to the short-lived transient states which relax by molecular Auger decay, the long-lived ones decay by an interatomic Coulombic decay between two iodine atoms, during the molecular fragmentation

    A Case of Simultaneous Unilateral Anterior and Posterior Stafne Bone Defects

    No full text
    Stafne bone defects (SBDs) are asymptomatic mandibular lingual bone depressions mainly caused by soft tissue inclusions. The most common form of SBDs is posterior; the anterior variant of SBD is relatively uncommon. Although posterior SBD is easily diagnosed by the unique location on radiography, anterior SBD is sometimes misdiagnosed and confused with other pathological entities owing to the location. We report herein a case of simultaneous unilateral anterior and posterior SBDs. In the present case, definitive diagnosis for the anterior mandibular cavity was unclear, as in reported cases. Surgical exploration was thus performed for the lesion in the anterior mandibular cavity. Pathologic examination of the removed tissue showed salivary gland with chronic inflammation. Postoperatively, no functional disturbance has been observed. Management of the posterior SBD was conservative, with radiographic follow-up. To the best of our knowledge, this represents the first report of simultaneous unilateral anterior and posterior SBDs

    Disseminated Intravascular Coagulation after Surgery for Facial Injury

    No full text
    A case of disseminated intravascular coagulation (DIC) presenting after surgery for facial trauma associated with multiple facial bone fractures is described. With regard to the oral and maxillofacial region, DIC has been described in the literature following head trauma, infection, and metastatic disease. Until now, only 5 reports have described DIC after surgery for facial injury. DIC secondary to facial injury is thus rare. The patient in this case was young and had no medical history. Preoperative hemorrhage or postoperative septicemia may thus induce DIC

    Estimating Congestion in a Fixed-Route Bus by Using BLE Signals

    No full text
    Information on congestion of buses, which are one of the major public transportation modes, can be very useful in light of the current COVID-19 pandemic. Because it is unrealistic to manually monitor the number of riders on all buses in operation, a system that can automatically monitor congestion is necessary. The main goal of this paper’s work is to automatically estimate the congestion level on a bus route with acceptable performance. For practical operation, it is necessary to design a system that does not infringe on the privacy of passengers and ensures the safety of passengers and the installation sites. In this paper, we propose a congestion estimation system that protects passengers’ privacy and reduces the installation cost by using Bluetooth low-energy (BLE) signals as sensing data. The proposed system consists of (1) a sensing mechanism that acquires BLE signals emitted from passengers’ mobile terminals in the bus and (2) a mechanism that estimates the degree of congestion in the bus from the data obtained by the sensing mechanism. To evaluate the effectiveness of the proposed system, we conducted a data collection experiment on an actual bus route in cooperation with Nara Kotsu Co., Ltd. The results showed that the proposed system could estimate the number of passengers with a mean absolute error of 2.49 passengers (error rate of 38.8%

    Transient and local weakening of surface winds observed above the Kuroshio front in the winter East China Sea

    No full text
    To confirm whether surface winds strengthen above warm waters around oceanic fronts using in situ data, a field measurement was conducted using both expendable bathythermographs and Global Positioning System sondes released concurrently across the Kuroshio front in the East China Sea in December 2010. In contrast to previous studies mainly based on satellite observations, the finding of the present field survey is the local weakening of surface winds at the northern flank of the Kuroshio front. From the above field observation in conjunction with a regional numerical model experiment, it is suggested that the northwesterly winds crossing the Kuroshio front from the cooler side first weaken at the northern flank of the front because of the onset of upward transfer of the "nonslip" condition at the sea surface. Thereafter, as the atmospheric mixed layer with warm and humid air mass develops gradually downwind over the Kuroshio region, the surface winds are gradually accelerated by the momentum mixing with strong winds aloft. The surface winds remain strong over the cool East China Sea shelf, and it is thus considered that the surface winds only weaken at the northern flank of the Kuroshio front. However, numerical modeling indicates that this local weakening of the surface winds occurs as a transient state with a short duration and such a structure has thus rarely been detected in the long-term averaged wind fields observed by satellites. Key Points An XBT/GPS sonde observation was conducted across the Kuroshio front Local weakening of surface winds was found just above the Kuroshio front The weakening occurs at the onset of cross-frontal winds transientl

    Circulating miR-223 in Oral Cancer: Its Potential as a Novel Diagnostic Biomarker and Therapeutic Target

    No full text
    <div><p>Circulating microRNAs (miRNAs) have been detected in various types of cancer and have been proposed as novel biomarkers for diagnosis and treatment. Until recently, however, no studies had comprehensively examined circulating miRNAs in oral cancer. The current study used an ultra-sensitive genome-wide miRNA array to investigate changes in circulating miRNAs in plasma from five patients with oral cancer and ten healthy individuals. Results indicated that there were only a few circulating miRNAs, including miR-223, miR-26a, miR-126, and miR-21, that were up-regulated in patients with oral cancer. A subsequent validation test indicated that circulating miR-223 levels were significantly higher (~2-fold, P< 0.05) in patients with oral cancer (n = 31) than in those without cancer (n = 31). Moreover, miR-223 was found to be up-regulated in tumor-adjacent normal tissue compared to tumor tissue from patients with oral cancer. A gain-of-function assay was performed to explore the potential roles of circulating miR-223 in the development of oral cancer. Results revealed that miR-223 functions as a tumor suppressor by inhibiting cell proliferation and inducing apoptosis. In conclusion, this study suggested that circulating miR-223 may serve as a potential biomarker for diagnosis and that it may represent a novel therapeutic target for treatment of oral cancer.</p></div
    corecore