23 research outputs found

    Arsenic Metabolism by Human Gut Microbiota upon in Vitro Digestion of Contaminated Soils

    Get PDF
    BACKGROUND: Speciation analysis is essential when evaluating risks from arsenic (As) exposure. In an oral exposure scenario, the importance of presystemic metabolism by gut microorganisms has been evidenced with in vivo animal models and in vitro experiments with animal microbiota. However, it is unclear whether human microbiota display similar As metabolism, especially when present in a contaminated matrix. OBJECTIVES: We evaluated the metabolic potency of in vitro cultured human colon microbiota toward inorganic As (iAs) and As-contaminated soils. METHODS: A colon microbial community was cultured in a dynamic model of the human gut. These colon microbiota were incubated with iAs and with As-contaminated urban soils. We determined As speciation analysis using high-performance liquid chromatography coupled with inductively coupled plasma mass spectrometry. RESULTS: We found a high degree of methylation for colon digests both of iAs (10 mu g methylarsenical/g biomass/hr) and of As-contaminated soils (up to 28 mu g/g biomass/hr). Besides the formation of monomethylarsonic acid (MMA(V)), we detected the highly toxic monomethylarsonous acid (MMA(III)). Moreover, this is the first description of microbial thiolation leading to monomethylmonothioarsonic acid (MMMTA(V)). MMMTA(V), the toxicokinetic properties of which are not well known, was in many cases a major metabolite. CONCLUSIONS: Presystemic As metabolism is a significant process in the human body. Toxicokinetic studies aiming to completely elucidate the As metabolic pathway would therefore benefit from incorporating the metabolic potency of human gut microbiota. This will result in more accurate risk characterization associated with As exposures

    The application of sediment fingerprinting to floodplain and lake sediment cores: assumptions and uncertainties evaluated through case studies in the Nene Basin, UK

    Get PDF
    Purpose: Fine sediment has been shown to be a major cause of the degradation of lakes and rivers and, as a result, research has been directed towards the understanding of fine sediment dynamics and the minimisation of sediment inputs. The use of tracers within a sediment fingerprinting framework has become a heavily used technique to investigate the sources of fine sediment pressures. When combined with the use of historically deposited sediment, the technique provides the opportunity to reconstruct past changes to the environment. However, alterations to tracer signatures during sediment transport and storage are a major potential source of uncertainty associated with tracer use. At present, few studies have quantified the uncertainties associated with tracer use. Materials and methods: This paper investigated uncertainty by determining the differences between sediment provenance predictions obtained using lithogenic radionuclide, geochemical and mineral magnetic signatures when fingerprinting lake and floodplain sedimentary deposits. It also investigated the potential causes of the observed differences. Results and discussion: A reservoir core was fingerprinted with the least uncertainty, with tracer group predictions ∌28 % apart and a consistent down-core trend in changing sediment provenance produced. When fingerprinting an on-line lake core and four floodplain cores, differences between tracer group predictions were as large as 100 %; the down-core trends in changing sediment provenance were also different. The differences between tracer group predictions could be attributed to the organic matter content and particle size of the sediment. There was also evidence of the in-growth of bacterially derived magnetite and chemical dissolution affecting the preservation of tracer signatures. Simple data corrections for sediment organic matter content and particle size did not result in significantly greater agreement between the predictions of the different tracer groups. Likewise, the inclusions of weightings for tracer discriminatory efficiency and within-source variability had minimal effects on the fingerprinting results. Conclusions: This paper highlights the importance of tracer selection and the consideration of recognising tracer non-conservatism when using lake and floodplain sediment deposits to reconstruct anthropogenic changes to the environment and changing sediment dynamics. It was recommended that future research focus on the assessment of uncertainty using the artificial mixing of sediment source samples, the limitation of the fingerprinting to narrow particle size fractions and the development of specific particle size and organic matter correction factors for each tracer

    The geochemistry of primary and weathered oil shale and coquina across the Julia Creek vanadium deposit (Queensland, Australia)

    No full text
    A significant resource of vanadium and molybdenum exists near Julia Creek, Australia, where the middle Cretaceous organic-rich Toolebuc Formation lies between 0 and 25 m of the surface. We present and discuss a comprehensive geochemical study of the Toolebuc Formation and its enclosing stratigraphy near Julia Creek to understand this ore deposit. V and Mo contents in fresh facies are strongly\ud associated with total organic carbon (TOC) contents, but not\ud with Al or CaCO3; this suggests that V and Mo were originally concentrated in the organic fraction. However,\ud chemical extractions using H2O2 indicate that Mo was\ud originally concentrated in pyrite. The data also suggest that V was mobilised from organic matter during early diagenesis and became associated with clays as little V was extracted by H2O2 in the fresh samples. TOC contents in the Toolebuc Formation were removed during weathering, residually enriching trace metals including V and Mo, and as a result, the TOC relationship with V and Mo disintegrates. With weathering, both V and Mo predominantly became associated with iron oxide/hydroxide phases (and possibly other unidentified phases) as these elements in the weathered facies were highly soluble in the sodium citrate–sodium dithionite digestion. Large shale-hosted V and Mo deposits such as Julia Creek offer a potentially viable alternative to the currently mined magnetite-hosted deposits. A thorough understanding of the formation and host\ud mineral phases for V and Mo of these shale deposits,\ud however, is critical to ensure that these valuable metals\ud can be feasibly extracted
    corecore