151 research outputs found

    Nanosecond molecular relaxations in lipid bilayers studied by high energy resolution neutron scattering and in-situ diffraction

    Full text link
    We report a high energy-resolution neutron backscattering study to investigate slow motions on nanosecond time scales in highly oriented solid supported phospholipid bilayers of the model system DMPC -d54 (deuterated 1,2-dimyristoyl-sn-glycero-3-phoshatidylcholine), hydrated with heavy water. Wave vector resolved quasi-elastic neutron scattering (QENS) is used to determine relaxation times τ\tau, which can be associated with different molecular components, i.e., the lipid acyl chains and the interstitial water molecules in the different phases of the model membrane system. The inelastic data are complemented both by energy resolved and energy integrated in-situ diffraction. From a combined analysis of the inelastic data in the energy and time domain, the respective character of the relaxation, i.e., the exponent of the exponential decay is also determined. From this analysis we quantify two relaxation processes. We associate the fast relaxation with translational diffusion of lipid and water molecules while the slow process likely stems from collective dynamics

    Distinguishing among Technicolor/Warped Scenarios in Dileptons

    Get PDF
    Models of dynamical electroweak symmetry breaking usually include new spin-1 resonances, whose couplings and masses have to satisfy electroweak precision tests. We propose to use dilepton searches to probe the underlying structure responsible for satisfying these. Using the invariant mass spectrum and charge asymmetry, we can determine the number, parity, and isospin of these resonances. We pick three models of strong/warped symmetry breaking, and show that each model produces specific features that reflect this underlying structure of electroweak symmetry breaking and cancellations.Comment: Added missing referenc

    It is a Graviton! or maybe not

    Full text link
    The discovery of Kaluza-Klein (KK) gravitons is a smoking gun of extra dimensions. Other scenarios, however, could give rise to spin-two resonances of a new strongly-coupled sector and act as impostors. In this paper we prove that a spin-two resonance does not couple to the Standard Model through dimension-four operators. We then show that the massive graviton and its impostor both couple to the Standard Model through the same dimension-five operators. Therefore the spin determination is identical. Nevertheless, we also show that one can use the ratio of branching ratios to photons and to jets for distinguishing between KK gravitons and their impostors. The capacity to distinguish between KK gravitons and impostors is a manifestation of the breakdown of the duality between AdS and strongly-coupled theories.Comment: 14 pages, 3 figures, 1 table. References added, typos correcte

    The fifth dimension as an analogue computer for strong interactions at the LHC

    Get PDF
    We present a mechanism to get S ~ 0 or even negative, without bringing into play the SM fermion sector. This mechanism can be applied to a wide range of 5D models, including composite Higgs and Higgsless models. As a realization of the mechanism we introduce a simple model, although the effect on S does not rely on the underlying dynamics generating the background. Models that include this mechanism enjoy the following features: weakly-coupled light resonances (as light as 600 GeV) and degenerate or inverted resonance spectrum.Comment: JHEP version. References adde

    Mass-Matching in Higgsless

    Full text link
    Modern extra-dimensional Higgsless scenarios rely on a mass-matching between fermionic and bosonic KK resonances to evade constraints from precision electroweak measurements. After analyzing all of the Tevatron and LEP bounds on these so-called Cured Higgsless scenarios, we study their LHC signatures and explore how to identify the mass-matching mechanism, the key to their viability. We find singly and pair produced fermionic resonances show up as clean signals with 2 or 4 leptons and 2 hard jets, while neutral and charged bosonic resonances are visible in the dilepton and leptonic WZ channels, respectively. A measurement of the resonance masses from these channels shows the matching necessary to achieve S0S\simeq 0. Moreover, a large single production of KK-fermion resonances is a clear indication of compositeness of SM quarks. Discovery reach is below 10 fb1^{-1} of luminosity for resonances in the 700 GeV range.Comment: 28 pages, 18 figure

    Holographic approach to a minimal Higgsless model

    Full text link
    In this work, following an holographic approach, we carry out a low energy effective study of a minimal Higgsless model based on SU(2) bulk symmetry broken by boundary conditions, both in flat and warped metric. The holographic procedure turns out to be an useful computation technique to achieve an effective four dimensional formulation of the model taking into account the corrections coming from the extra dimensional sector. This technique is used to compute both oblique and direct contributions to the electroweak parameters in presence of fermions delocalized along the fifth dimension.Comment: Latex file, 23 page

    Structure of the Lesser Antilles subduction forearc and backstop from 3D seismic tomography

    Get PDF
    In 2007 the Sismantilles II experiment was conducted to constrain structure and seismicity in the central Lesser Antilles subduction zone. The seismic refraction data recorded by a network of 27 OBSs over an area of 65 km×95 km provide new insights on the crustal structure of the forearc offshore Martinique and Dominica islands. The tomographic inversion of first arrival travel times provides a 3D P-wave velocity model down to 15 km. Basement velocity gradients depict that the forearc is made up of two distinct units: A high velocity gradient domain named the inner forearc in comparison to a lower velocity gradient domain located further trenchward named the outer forearc. Whereas the inner forearc appears as a rigid block uplifted and possibly tilted as a whole to the south, short wavelength deformations of the outer forearc basement are observed, beneath a 3 to 6 km thick sedimentary pile, in relation with the subduction of the Tiburon Ridge and associated sea floor reliefs. North, offshore Dominica Island, the outer forearc is 70 km wide. It extends as far as 180 km to the east of the volcanic front where it acts as a backstop on which the accretionary wedge developed. Its width decreases strongly to the south to terminate offshore Martinique where the inner forearc acts as the backstop. The inner forearc is likely the extension at depth of the Mesozoic magmatic crust outcropping to the north in La Désirade Island and along the scarp of the Karukera Spur. The outer forearc could be either the eastern prolongation of the inner forearc, but the crust was thinned and fractured during the past tectonic history of the area or by recent subduction processes, or an oceanic terrane more recently accreted to the island arc.Peer Reviewe

    Linear confinement without dilaton in bottom-up holography for walking technicolour

    Full text link
    In PRD78(2008)055005 [arXiv:0805.1503 [hep-ph]] and PRD79(2009)075004 [arXiv:0809.1324 [hep-ph]], we constructed a holographic description of walking technicolour theories using both a hard- and a soft-wall model. Here, we show that the dilaton field becomes phenomenologically irrelevant for the spectrum of spin-one resonances once a term is included in the Lagrangian that mixes the Goldstone bosons and the longitudinal components of the axial vector mesons. We show how this mixing affects our previous results and we make predictions about how this description of technicolour can be tested.Comment: 7 pages, no figure

    Top quark effects in composite vector pair production at the LHC

    Full text link
    In the context of a strongly coupled Electroweak Symmetry Breaking, composite light scalar singlet and composite triplet of heavy vectors may arise from an unspecified strong dynamics and the interactions among themselves and with the Standard Model gauge bosons and fermions can be described by a SU(2)L×SU(2)R/SU(2)L+RSU(2)_L\times SU(2)_R/SU(2)_{L+R} Effective Chiral Lagrangian. In this framework, the production of the V+VV^{+}V^{-} and V0V0V^{0}V^{0} final states at the LHC by gluon fusion mechanism is studied in the region of parameter space consistent with the unitarity constraints in the elastic channel of longitudinal gauge boson scattering and in the inelastic scattering of two longitudinal Standard Model gauge bosons into Standard Model fermions pairs. The expected rates of same-sign di-lepton and tri-lepton events from the decay of the V0V0V^{0}V^{0} final state are computed and their corresponding backgrounds are estimated. It is of remarkable relevance that the V0V0V^{0}V^{0} final state can only be produced at the LHC via gluon fusion mechanism since this state is absent in the Drell-Yan process. It is also found that the V+VV^{+}V^{-} final state production cross section via gluon fusion mechanism is comparable with the V+VV^{+}V^{-} Drell-Yan production cross section. The comparison of the V0V0V^{0}V^{0} and V+VV^{+}V^{-} total cross sections will be crucial for distinguishing the different models since the vector pair production is sensitive to many couplings. This will also be useful to determine if the heavy vectors are only composite vectors or are gauge vectors of a spontaneously broken gauge symmetry.Comment: 18 pages, 5 tables, 6 figures. Missing figures added. Matches published versio

    Universal contributions to scalar masses from five dimensional supergravity

    Get PDF
    We compute the effective Kahler potential for matter fields in warped compactifications, starting from five dimensional gauged supergravity, as a function of the matter fields localization. We show that truncation to zero modes is inconsistent and the tree-level exchange of the massive gravitational multiplet is needed for consistency of the four-dimensional theory. In addition to the standard Kahler coming from dimensional reduction, we find the quartic correction coming from integrating out the gravity multiplet. We apply our result to the computation of scalar masses, by assuming that the SUSY breaking field is a bulk hypermultiplet. In the limit of extreme opposite localization of the matter and the spurion fields, we find zero scalar masses, consistent with sequestering arguments. Surprisingly enough, for all the other cases the scalar masses are tachyonic. This suggests the holographic interpretation that a CFT sector always generates operators contributing in a tachyonic way to scalar masses. Viability of warped su- persymmetric compactifications necessarily asks then for additional contributions. We discuss the case of additional bulk vector multiplets with mixed boundary conditions, which is a partic- ularly simple and attractive way to generate large positive scalar masses. We show that in this case successful fermion mass matrices implies highly degenerate scalar masses for the first two generations of squarks and sleptons.Comment: 23 pages. v2: References added, new section on effect of additional bulk vector multiplets and phenomenolog
    corecore