77 research outputs found

    Bounds on the cosmogenic neutrino flux

    Full text link
    Under the assumption that some part of the observed highest energy cosmic rays consists of protons originating from cosmological distances, we derive bounds on the associated flux of neutrinos generated by inelastic processes with the cosmic microwave background photons. We exploit two methods. First, a power-like injection spectrum is assumed. Then, a model-independent technique, based on the inversion of the observed proton flux, is presented. The inferred lower bound is quite robust. As expected, the upper bound depends on the unknown composition of the highest energy cosmic rays. Our results represent benchmarks for all ultrahigh energy neutrino telescopes.Comment: 12 pages, 6 figure

    Super-GZK Photons from Photon-Axion Mixing

    Full text link
    We show that photons with energies above the GZK cutoff can reach us from very distant sources if they mix with light axions in extragalactic magnetic fields. The effect which enables this is the conversion of photons into axions, which are sufficiently weakly coupled to travel large distances unimpeded. These axions then convert back into high energy photons close to the Earth. We show that photon-axion mixing facilitates the survival of super-GZK photons most efficiently with a photon-axion coupling scale of order 10^11 GeV, which is in the same range as the scale for the photon-axion mixing explanation for the dimming of supernovae without cosmic acceleration. We discuss possible observational consequences of this effect.Comment: 17 pages, 5 figures. Published versio

    Ultra-High Energy Cosmic Ray production in the polar cap regions of black hole magnetospheres

    Full text link
    We develop a model of ultra-high energy cosmic ray (UHECR) production via acceleration in a rotation-induced electric field in vacuum gaps in the magnetospheres of supermassive black holes (BH). We show that if the poloidal magnetic field near the BH horizon is misaligned with the BH rotation axis, charged particles, which initially spiral into the BH hole along the equatorial plane, penetrate into the regions above the BH "polar caps" and are ejected with high energies to infinity. We show that in such a model acceleration of protons near a BH of typical mass 3e8 solar masses is possible only if the magnetic field is almost aligned with the BH rotation axis. We find that the power of anisotropic electromagnetic emission from an UHECR source near a supermassive BH should be at least 10-100 times larger then UHECR power of the source. This implies that if the number of UHECR sources within the 100 Mpc sphere is ~100, the power of electromagnetic emission which accompanies proton acceleration in each source, 10424310^{42-43} erg/s, is comparable to the typical luminosities of active galactic nuclei (AGN) in the local Universe. We also explore the acceleration of heavy nuclei, for which the constraints on the electromagnetic luminosity and on the alignment of magnetic field in the gap are relaxed

    PT-symmetric noncommutative spaces with minimal volume uncertainty relations

    Get PDF
    We provide a systematic procedure to relate a three dimensional q-deformed oscillator algebra to the corresponding algebra satisfied by canonical variables describing noncommutative spaces. The large number of possible free parameters in these calculations is reduced to a manageable amount by imposing various different versions of PT-symmetry on the underlying spaces, which are dictated by the specific physical problem under consideration. The representations for the corresponding operators are in general non-Hermitian with regard to standard inner products and obey algebras whose uncertainty relations lead to minimal length, areas or volumes in phase space. We analyze in particular one three dimensional solution which may be decomposed to a two dimensional noncommutative space plus one commuting space component and also into a one dimensional noncommutative space plus two commuting space components. We study some explicit models on these type of noncommutative spaces.Comment: 18 page

    Upper Bounds on the Neutrino-Nucleon Inelastic Cross Section

    Full text link
    Extraterrestrial neutrinos can initiate deeply developing air showers, and those that traverse the atmosphere unscathed may produce cascades in the ice or water. Up to now, no such events have been observed. This can be translated into upper limits on the diffuse neutrino flux. On the other hand, the observation of cosmic rays with primary energies > 10^{10} GeV suggests that there is a guaranteed flux of cosmogenic neutrinos, arising from the decay of charged pions (and their muon daughters) produced in proton interactions with the cosmic microwave background. In this work, armed with these cosmogenic neutrinos and the increased exposure of neutrino telescopes we bring up-to-date model-independent upper bounds on the neutrino-nucleon inelastic cross section. Uncertainties in the cosmogenic neutrino flux are discussed and taken into account in our analysis. The prospects for improving these bounds with the Pierre Auger Observatory are also estimated. The unprecedented statistics to be collected by this experiment in 6 yr of operation will probe the neutrino-nucleon inelastic cross section at the level of Standard Model predictions.Comment: To be published in JCA

    Simulation of the cosmic ray tau neutrino telescope (CRTNT) experiment

    Full text link
    A tau lepton can be produced in a charged current interaction by cosmic ray tau neutrino with material inside a mountain. If it escapes from the mountain, it will decay and initiate a shower in the air, which can be detected by an air shower fluorescence/Cherenkov light detector. Designed according to such a principle, the Cosmic Ray Tau Neutrino Telescope (CRTNT) experiment, located at the foothill of Mt. Balikun in Xinjiang, China, will search for very high-energy cosmic tau neutrinos from energetic astrophysical sources by detecting those showers. This paper describes a Monte Carlo simulation for a detection of tau neutrino events by the CRTNT experiment. Ultra-high-energy cosmic ray events are also simulated to estimate the potential contamination. With the CRTNT experiment composed of four detector stations, each covering 64 by 14 degrees field of view, the expected event rates are 28.6, 21.9 and 4.7 per year assuming AGN neutrino flux according to Semikoz et. al. 2004, MPR AGN jet model and SDSS AGN core model, respectively. Null detection of such tau event by the CRTNT experiment in one year could set 90% C.L. upper limit at 19.9 (eV^-1 cm^-2 s^-1 sr^-1) for E^-2 neutrino spectrum.Comment: 14 page

    Determining the neurotransmitter concentration profile at active synapses

    Get PDF
    Establishing the temporal and concentration profiles of neurotransmitters during synaptic release is an essential step towards understanding the basic properties of inter-neuronal communication in the central nervous system. A variety of ingenious attempts has been made to gain insights into this process, but the general inaccessibility of central synapses, intrinsic limitations of the techniques used, and natural variety of different synaptic environments have hindered a comprehensive description of this fundamental phenomenon. Here, we describe a number of experimental and theoretical findings that has been instrumental for advancing our knowledge of various features of neurotransmitter release, as well as newly developed tools that could overcome some limits of traditional pharmacological approaches and bring new impetus to the description of the complex mechanisms of synaptic transmission

    Observations of Ultra-High Energy Cosmic Rays

    Full text link
    The status of measurements of the arrival directions, mass composition and energy spectrum of cosmic rays above 3 x 10^18 eV (3 EeV) is reviewed using reports presented at the 29th International Cosmic Ray Conference held in Pune, India, in August 2005. The paper is based on a plenary talk given at the TAUP2005 meeting in Zaragoza, 10 - 14 September 2005.Comment: 7 pages and two figure

    Searching for a Correlation Between Cosmic-Ray Sources Above 10^{19} eV and Large-Scale Structure

    Full text link
    We study the anisotropy signature which is expected if the sources of ultra high energy, >10^{19} eV, cosmic-rays (UHECRs) are extragalactic and trace the large scale distribution of luminous matter. Using the PSCz galaxy catalog as a tracer of the large scale structure (LSS), we derive the expected all sky angular distribution of the UHECR intensity. We define a statistic, that measures the correlation between the predicted and observed UHECR arrival direction distributions, and show that it is more sensitive to the expected anisotropy signature than the power spectrum and the two point correlation function. The distribution of the correlation statistic is not sensitive to the unknown redshift evolution of UHECR source density and to the unknown strength and structure of inter-galactic magnetic fields. We show, using this statistic, that recently published >5.7x10^{19} eV Auger data are inconsistent with isotropy at ~98% CL, and consistent with a source distribution that traces LSS, with some preference to a source distribution that is biased with respect to the galaxy distribution. The anisotropy signature should be detectable also at lower energy, >4x10^{19} eV. A few fold increase of the Auger exposure is likely to increase the significance to >99% CL, but not to >99.9% CL (unless the UHECR source density is comparable or larger than that of galaxies). In order to distinguish between different bias models, the systematic uncertainty in the absolute energy calibration of the experiments should be reduced to well below the current ~25%.Comment: 17 pages, 8 figures. v2: reference added, typos corrected, accepted to JCA
    corecore