5 research outputs found

    Remarkable low-energy properties of the pseudogapped semimetal Be5Pt

    Get PDF
    We report measurements and calculations on the properties of the intermetallic compound Be5Pt. High-quality polycrystalline samples show a nearly constant temperature dependence of the electrical resistivity over a wide temperature range. On the other hand, relativistic electronic structure calculations indicate the existence of a narrow pseudogap in the density of states arising from accidental approximate Dirac cones extremely close to the Fermi level. A small true gap of order 3c3 meV is present at the Fermi level, yet the measured resistivity is nearly constant from low to room temperature. We argue that this unexpected behavior can be understood by a cancellation of the energy dependence of density of states and relaxation time due to disorder, and discuss a model for electronic transport. With applied pressure, the resistivity becomes semiconducting, consistent with theoretical calculations that show that the bandgap increases with applied pressure. We further discuss the role of Be inclusions in the samples

    The 2021 room-temperature superconductivity roadmap.

    Get PDF
    Designing materials with advanced functionalities is the main focus of contemporary solid-state physics and chemistry. Research efforts worldwide are funneled into a few high-end goals, one of the oldest, and most fascinating of which is the search for an ambient temperature superconductor (A-SC). The reason is clear: superconductivity at ambient conditions implies being able to handle, measure and access a single, coherent, macroscopic quantum mechanical state without the limitations associated with cryogenics and pressurization. This would not only open exciting avenues for fundamental research, but also pave the road for a wide range of technological applications, affecting strategic areas such as energy conservation and climate change. In this roadmap we have collected contributions from many of the main actors working on superconductivity, and asked them to share their personal viewpoint on the field. The hope is that this article will serve not only as an instantaneous picture of the status of research, but also as a true roadmap defining the main long-term theoretical and experimental challenges that lie ahead. Interestingly, although the current research in superconductor design is dominated by conventional (phonon-mediated) superconductors, there seems to be a widespread consensus that achieving A-SC may require different pairing mechanisms.In memoriam, to Neil Ashcroft, who inspired us all

    The 2021 Room-Temperature Superconductivity Roadmap

    Get PDF
    Last year, the report of Room-Temperature Superconductivity in high-pressure carbonaceous sulfur hydride marked a major milestone in the history of physics: one of the holy grails of condensed matter research was reached after more than one century of continuing efforts. This long path started with Neil Ashcroft's and Vitaly Ginzburg's visionary insights on high-temperature superconductivity in metallic hydrogen in the 60's and 70's, and has led to the current hydride fever, following the report of high-Tc high-pressure superconductivity in H3S in 2014. This Roadmap collects selected contributions from many of the main actors in this exciting chapter of condensed matter history. Key for the rapid progress of this field has been a new course for materials discovery, where experimental and theoretical discoveries proceed hand in hand. The aim of this Roadmap is not only to offer a snapshot of the current status of superconductor materials research, but also to define the theoretical and experimental obstacles that must be overcome for us to realize fully exploitable room temperature superconductors, and foresee future strategies and research directions. This means improving synthesis techniques, extending first-principles methods for superconductors and structural search algorithms for crystal structure predictions, but also identifying new approaches to material discovery based on artificial intelligence
    corecore