1,933 research outputs found

    Correlation of high energy muons with primary composition in extensive air shower

    Get PDF
    An experimental investigation of high energy muons above 200 GeV in extensive air showers has been made for studying high energy interaction and primary composition of cosmic rays of energies in the range 10 to the 14th power approx. 10 to the 15th power eV. The muon energies are estimated from the burst sizes initiated by the muons in the rock, which are measured by four layers of proportional counters, each of area 5 x 2.6 sq m, placed at 30 m.w.e. deep, Funasaka tunnel vertically below the air shower array. These results are compared with Monte Carlo simulations based on the scaling model and the fireball model for two primary compositions, all proton and mixed

    Diagnostic work-up of patients presenting in primary care with lower abdominal symptoms:which faecal test and triage strategy should be used?

    Get PDF
    Bowel endoscopy referrals from primary care have increased steadily over recent years. However, most patients do not have significant colorectal disease (SCD). Therefore, strategies to select those who would benefit most from endoscopy are of current interest. A recent study developed a multivariable diagnostic model for SCD with routine clinical information, extended with quantitative faecal calprotectin (f-C) point-of-care (POC) testing and/or qualitative POC faecal immunochemical test (FIT) for haemoglobin (f-Hb) results. This study used POC tests for both f-C and f-Hb; however, POC tests have many disadvantages and there are several reasons why quantitative measurements of f-Hb are advantageous. Quantitative faecal immunochemical tests have been used very successfully in triage of patients presenting in primary care as a rule-out test. Studies have compared f-C and f-Hb in this clinical context and consider that f-C is not required in diagnosis. A single quantitative f-Hb result, without any clinical information, could be sufficient to decide whom to refer for endoscopy and, because of the significant overlap of symptoms in those with and without SCD, could be the primary investigation performed. Please see related article: http://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-016-0684-5

    Radiosensitization of gliomas by intracellular generation of 5-fluorouracil potentiates prodrug activator gene therapy with a retroviral replicating vector.

    Get PDF
    A tumor-selective non-lytic retroviral replicating vector (RRV), Toca 511, and an extended-release formulation of 5-fluorocytosine (5-FC), Toca FC, are currently being evaluated in clinical trials in patients with recurrent high-grade glioma (NCT01156584, NCT01470794 and NCT01985256). Tumor-selective propagation of this RRV enables highly efficient transduction of glioma cells with cytosine deaminase (CD), which serves as a prodrug activator for conversion of the anti-fungal prodrug 5-FC to the anti-cancer drug 5-fluorouracil (5-FU) directly within the infected cells. We investigated whether, in addition to its direct cytotoxic effects, 5-FU generated intracellularly by RRV-mediated CD/5-FC prodrug activator gene therapy could also act as a radiosensitizing agent. Efficient transduction by RRV and expression of CD were confirmed in the highly aggressive, radioresistant human glioblastoma cell line U87EGFRvIII and its parental cell line U87MG (U87). RRV-transduced cells showed significant radiosensitization even after transient exposure to 5-FC. This was confirmed both in vitro by a clonogenic colony survival assay and in vivo by bioluminescence imaging analysis. These results provide a convincing rationale for development of tumor-targeted radiosensitization strategies utilizing the tumor-selective replicative capability of RRV, and incorporation of radiation therapy into future clinical trials evaluating Toca 511 and Toca FC in brain tumor patients

    Experimental demonstration of quantum teleportation of a squeezed state

    Full text link
    Quantum teleportation of a squeezed state is demonstrated experimentally. Due to some inevitable losses in experiments, a squeezed vacuum necessarily becomes a mixed state which is no longer a minimum uncertainty state. We establish an operational method of evaluation for quantum teleportation of such a state using fidelity, and discuss the classical limit for the state. The measured fidelity for the input state is 0.85±\pm 0.05 which is higher than the classical case of 0.73±\pm0.04. We also verify that the teleportation process operates properly for the nonclassical state input and its squeezed variance is certainly transferred through the process. We observe the smaller variance of the teleported squeezed state than that for the vacuum state input.Comment: 7 pages, 1 new figure, comments adde
    corecore