456 research outputs found

    Generalised and abdominal obesity and risk of diabetes, hypertension and hypertension–diabetes co-morbidity in England

    Get PDF
    Objectives To look at trends in generalised (body mass index (BMI) ≥30 kg m–2) and abdominal (waist circumference (WC) >102 cm in men, >88 cm in women) obesity among adults between 1993 and 2003, and to evaluate their association with diabetes, hypertension and hypertension–diabetes co-morbidity (HDC) in England. Design Analyses of nationally representative cross-sectional population surveys, the Health Survey for England (HSE). Subjects Non-institutionalised men and women aged ≥35 years. Measurements Interviewer-administered questionnaire (sociodemographic information, risk factors, doctor-diagnosed diabetes), measurements of height and weight to calculate BMI. WC and blood pressure measurements were taken by trained nurses. Results Generalised obesity increased among men from 15.8% in 1993 to 26.3% in 2003, and among women from 19.3% to 25.8%. Abdominal obesity also increased in both sexes (men: 26.2% in 1993 to 39.0% in 2003; women: 32.4% to 47.0%). In 1994, 1998 and 2003, generalised and abdominal obesity were independently associated with risk of hypertension, diabetes and HDC. The odds of diabetes associated with generalised obesity in 1994, 1998 and 2003 were 1.62, 2.26 and 2.62, respectively, in women and 1.24, 1.82 and 2.10, respectively, in men. Similar differences were observed for hypertension and HDC. Men and women with abdominal obesity also showed a higher risk for diabetes, hypertension and HDC than those with a normal WC. Conclusions If current trends in obesity continue then the risk of related morbidities may also increase. This will impact on cardiovascular disease morbidity and mortality, with cost implications for the health service. Therefore there is an urgent need to control the epidemic of obesity

    Investigating the role of versican in immune exclusion in triple negative breast cancer

    Get PDF
    Triple negative breast cancer has the highest T cell infiltrate in comparison to other subtypes of breast cancer. To try to improve the anti-tumour response of these T cells, immunotherapy has been trialled, however clinical trials showed poor results. The response to immunotherapy in solid tumours is limited and this has been attributed to the presence of the extracellular matrix (ECM). The ECM can interact with T cells biochemically or physically, affecting their trafficking in the tumour. This can cause the restriction of T cells in the stroma limiting their contact with the tumour epithelial cells, leading to an immune excluded phenotype. Identifying key components of the ECM that are associated with the restriction of immune cells can provide potential targets that could be degraded to improve anti-tumour immunity. From previous work in the lab a signature of molecules were identified which were associated with immunosuppression. In the initial analysis of these molecules in a subset of TNBC tissues, versican (VCAN) was identified as an ECM component that associates with immune cell infiltration into the tumour epithelium. VCAN is a proteoglycan which has the glycosaminoglycan chondroitin sulphate (CS) attached to the peptide backbone. Through its multiple domains and glycan post-translational modifications, VCAN has been shown to have a role in inflammation and cancer progression. To study how VCAN may affect the trafficking of T cells, I first looked at how VCAN expression associated with immune excluded tissues. It was observed that VCAN levels were higher in the epithelial zone of excluded tissues compared to inflamed tissues. CS levels were then explored within the tissues where the sulphation patterns on CS in the stroma led to the discovery of CS-C being higher in excluded tissues and CS-A being higher in inflamed tissues. To observe this effect in-vitro, VCAN was enriched from TNBC and fibroblast cell line secretions. The effect of CS was tested through chondroitinase (CSase) treatment of VCAN enriched protein in a transwell model. An increase in invasion was observed following CSase treatment of protein with high levels of CS-C. To conclude, from the study I identified that within TNBC tissues the excluded immune phenotype associates with epithelial zone expressed VCAN which has a different CS sulphation pattern compared to inflamed tissues, and this difference in sulphation inhibits T-cell trafficking in in vitro models, which can be overcome through enzymatic digestion of the CS. Therefore, targeting VCAN by degrading CS may provide a way to drive excluded tumours into an inflamed and therapy responsive phenotype. Such an approach could be coupled with immunotherapy such as cell-based T-cell therapies

    Targeting Versican as a Potential Immunotherapeutic Strategy in the Treatment of Cancer.

    Get PDF
    A growing body of literature links events associated with the progression and severity of immunity and inflammatory disease with the composition of the tissue extracellular matrix as defined by the matrisome. One protein in the matrisome that is common to many inflammatory diseases is the large proteoglycan versican, whose varied function is achieved through multiple isoforms and post-translational modifications of glycosaminoglycan structures. In cancer, increased levels of versican are associated with immune cell phenotype, disease prognosis and failure to respond to treatment. Whether these associations between versican expression and tumour immunity are the result of a direct role in the pathogenesis of tumours is not clear. In this review, we have focused on the role of versican in the immune response as it relates to tumour progression, with the aim of determining whether our current understanding of the immunobiology of versican warrants further study as a cancer immunotherapy target
    corecore