159 research outputs found

    Stable multilevel splittings of boundary edge element spaces

    Get PDF
    We establish the stability of nodal multilevel decompositions of lowest-order conforming boundary element subspaces of the trace space H12(divΓ,Γ){\boldsymbol{H}}^{-\frac {1}{2}}(\operatorname {div}_{\varGamma },{\varGamma }) of H(curl,Ω){\boldsymbol{H}}(\operatorname {\bf curl},{\varOmega }) on boundaries of triangulated Lipschitz polyhedra. The decompositions are based on nested triangular meshes created by uniform refinement and the stability bounds are uniform in the number of refinement levels. The main tool is the general theory of P.Oswald (Interface preconditioners and multilevel extension operators, in Proc. 11th Intern. Conf. on Domain Decomposition Methods, London, 1998, pp.96-103) that teaches, when stability of decompositions of boundary element spaces with respect to trace norms can be inferred from corresponding stability results for finite element spaces. H(curl,Ω){\boldsymbol{H}}(\operatorname {\bf curl},{\varOmega }) -stable discrete extension operators are instrumental in this. Stable multilevel decompositions immediately spawn subspace correction preconditioners whose performance will not degrade on very fine surface meshes. Thus, the results of this article demonstrate how to construct optimal iterative solvers for the linear systems of equations arising from the Galerkin edge element discretization of boundary integral equations for eddy current problem

    Coupled boundary-element scheme for eddy-current computation

    Get PDF
    Abstract.: The mathematical foundation of a symmetric boundary-element method for the computation of eddy currents in a linear homogeneous conductor which is exposed to an alternating magnetic field is presented. Starting from the A-based variational formulation of the eddy-current equations and a related transmission problem, the problem inside and outside the conductors is reformulated in terms of integral equations on the boundary of the conductors. Surface currents occur as new unknowns of this direct formulation. The integral equations can be coupled in a symmetric fashion using the transmission conditions for the vector potential A and the magnetic field H. The resulting variational problem is elliptic in suitable trace spaces. A conforming Galerkin boundary-element discretization is employed, which relies on surface edge elements and provides quasi-optimal discrete approximations for the tangential traces of A and H. Surface stream functions supplemented with co-homology vector fields ensure the vital zero divergence of the discrete equivalent surface currents. Simple expressions allow the computation of approximate total Ohmic losses and surface forces from the discrete boundary dat

    Trefftz discontinuous Galerkin methods for acoustic scattering on locally refined meshes

    Get PDF
    We extend the a priori error analysis of Trefftz-discontinuous Galerkin methods for time-harmonic wave propagation problems developed in previous papers to acoustic scattering problems and locally refined meshes. To this aim, we prove refined regularity and stability results with explicit dependence of the stability constant on the wave number for non convex domains with non connected boundaries. Moreover, we devise a new choice of numerical flux parameters for which we can prove L2-error estimates in the case of locally refined meshes near the scatterer. This is the setting needed to develop a complete hp-convergence analysis

    Stability results for the time-harmonic Maxwell equations with impedance boundary conditions

    Get PDF
    We consider the time-harmonic Maxwell equations with constant coefficients in a bounded, uniformly star-shaped polyhedron. We prove wavenumber-explicit norm bounds for weak solutions. This result is pivotal for convergence proofs in numerical analysis and may be a tool in the analysis of electromagnetic boundary integral operators

    Boundary Element Methods for the Laplace Hypersingular Integral Equation on Multiscreens: a two-level Substructuring Preconditioner

    Full text link
    We present a preconditioning method for the linear systems arising from the boundary element discretization of the Laplace hypersingular equation on a 22-dimensional triangulated surface Γ\Gamma in R3\mathbb{R}^3. We allow Γ\Gamma to belong to a large class of geometries that we call polygonal multiscreens, which can be non-manifold. After introducing a new, simple conforming Galerkin discretization, we analyze a substructuring domain-decomposition preconditioner based on ideas originally developed for the Finite Element Method. The surface Γ\Gamma is subdivided into non-overlapping regions, and the application of the preconditioner is obtained via the solution of the hypersingular equation on each patch, plus a coarse subspace correction. We prove that the condition number of the preconditioned linear system grows poly-logarithmically with H/hH/h, the ratio of the coarse mesh and fine mesh size, and our numerical results indicate that this bound is sharp. This domain-decomposition algorithm therefore guarantees significant speedups for iterative solvers, even when a large number of subdomains is used
    corecore