24 research outputs found

    Binding of Nanoparticles Harboring Recombinant Large Surface Protein of Hepatitis B Virus to Scavenger Receptor Class B Type 1

    No full text
    (1) Background: As nanoparticles containing the hepatitis B virus (HBV) large (L) surface protein produced in yeast are expected to be useful as a carrier for targeting hepatocytes, they are also referred to as bio-nanocapsules (BNCs). However, a definitive cell membrane receptor for BNC binding has not yet been identified. (2) Methods: By utilizing fluorescence-labeled BNCs, we examined BNC binding to the scavenger receptor class B type 1 (SR-B1) expressed in HEK293T cells. (3) Results: Analyses employing SR-B1 siRNA and expression of SR-B1 fused with a green fluorescent protein (SR-B1-GFP) indicated that BNCs bind to SR-B1. As mutagenesis induced in the SR-B1 extracellular domain abrogates or attenuates BNC binding and endocytosis via SR-B1 in HEK293T cells, it was suggested that the ligand-binding site of SR-B1 is similar or close among high-density lipoprotein (HDL), silica, liposomes, and BNCs. On the other hand, L protein was suggested to attenuate an interaction between phospholipids and SR-B1. (4) Conclusions: SR-B1 can function as a receptor for binding and endocytosis of BNCs in HEK293T cells. Being expressed various types of cells, it is suggested that functions as a receptor for BNCs not only in HEK293T cells but also in other types of cells

    Binding of Hepatitis B Virus Pre-S1 Domain-Derived Synthetic Myristoylated Peptide to Scavenger Receptor Class B Type 1 with Differential Properties from Sodium Taurocholate Cotransporting Polypeptide

    No full text
    (1) Background: The myristoylated pre-S1 peptide (Myr47) synthesized to mimic pre-S1 domain (2-48) in large (L) surface protein of hepatitis B virus (HBV) prevents HBV infection to hepatocytes by binding to sodium taurocholate cotransporting polypeptide (NTCP). We previously demonstrated that yeast-derived nanoparticles containing L protein (bio-nanocapsules: BNCs) bind scavenger receptor class B type 1 (SR-B1). In this study, we examined the binding of Mry47 to SR-B1. (2) Methods: The binding and endocytosis of fluorescence-labeled Myr47 to SR-B1 (and its mutants)-green fluorescence protein (GFP) fusion proteins expressed in HEK293T cells were analyzed using flow cytometry and laser scanning microscopy (LSM). Various ligand-binding properties were compared between SR-B1-GFP and NTCP-GFP. Furthermore, the binding of biotinylated Myr47 to SR-B1-GFP expressed on HEK293T cells was analyzed via pull-down assays using a crosslinker and streptavidin-conjugated beads. (3) Conclusions: SR-B1 bound not only Myr47 but also its myristoylated analog and BNCs, but failed to bind a peptide without myristoylation. However, NTCP only bound Myr47 among the ligands tested. Studies using SR-B1 mutants suggested that both BNCs and Myr47 bind to similar sites of SR-B1. Crosslinking studies indicated that Myr47 binds preferentially SR-B1 multimer than monomer in both HEK293T and HepG2 cells

    Release of siRNA from Liposomes Induced by Curcumin

    No full text
    Liposomes are a potential carrier of small interfering RNA (siRNA) for drug delivery systems (DDS). In this study, we searched for a molecule capable of controlling the release of siRNA from a certain type of liposomes and found that curcumin could induce the release of siRNA from the liposomes encapsulating siRNA within 30 min. However, the release of siRNA from the liposomes by curcumin showed a unique dose-response (i.e., bell-shaped curve) with a maximal induction at around 60 μg/ml of curcumin. Liposomal lipid compositions and temperatures influenced the efficiency in the release of siRNA induced by curcumin. About 10% of curcumin at a 60 μg/ml dose was incorporated into the liposomes within 30 min under our experimental conditions. Our results suggest a possibility that curcumin is useful in controlling the permeability of liposomes carrying large molecules like siRNA

    Endogenous prolactin-releasing peptide regulates food intake in rodents

    No full text
    Food intake is regulated by a network of signals that emanate from the gut and the brainstem. The peripheral satiety signal cholecystokinin is released from the gut following food intake and acts on fibers of the vagus nerve, which project to the brainstem and activate neurons that modulate both gastrointestinal function and appetite. In this study, we found that neurons in the nucleus tractus solitarii of the brainstem that express prolactin-releasing peptide (PrRP) are activated rapidly by food ingestion. To further examine the role of this peptide in the control of food intake and energy metabolism, we generated PrRP-deficient mice and found that they displayed late-onset obesity and adiposity, phenotypes that reflected an increase in meal size, hyperphagia, and attenuated responses to the anorexigenic signals cholecystokinin and leptin. Hypothalamic expression of 6 other appetite-regulating peptides remained unchanged in the PrRP-deficient mice. Blockade of endogenous PrRP signaling in WT rats by central injection of PrRP-specific mAb resulted in an increase in food intake, as reflected by an increase in meal size. These data suggest that PrRP relays satiety signals within the brain and that selective disturbance of this system can result in obesity and associated metabolic disorders

    Size Distribution of Curcumin/Liposome.

    No full text
    <p>Representative data on the size of curcumin/liposome are shown here. The vertical axis shows the relative intensity of light scattering and the horizontal axis shows the size of liposomes on log scale.</p

    Effect of Curcumin/Liposome on IL-6 Production from Mouse Peritoneal Cells in In Vitro Culture.

    No full text
    <p>Peritoneal cells harvested from Balb/c mice injected with thioglycollate 3 days before. Peritoneal cells were cultured for 24 h in the absence (panel A) or presence (panel B) of LPS at 0.5 μg/ml. Blank columns represent cultures absent of both curcumin/liposome and control liposome. Curcumin/liposome (filled bars) was added to the culture so that curcumin concentrations became as indicated in the Figures. Control liposomes (gray bars) were added to culture in the same manner as curcumin/liposome, and its lipid concentration was consistent with that of curcumin/liposome. Data represent mean values ± standard deviation (bars) in triplicate assays. The statistical analysis was carried out by the standard Student’s t-test. * and **indicate that P<0.05 and P<0.01 compared to control liposomes, respectively.</p
    corecore