1,175 research outputs found

    Epidemic spreading with immunization and mutations

    Full text link
    The spreading of infectious diseases with and without immunization of individuals can be modeled by stochastic processes that exhibit a transition between an active phase of epidemic spreading and an absorbing phase, where the disease dies out. In nature, however, the transmitted pathogen may also mutate, weakening the effect of immunization. In order to study the influence of mutations, we introduce a model that mimics epidemic spreading with immunization and mutations. The model exhibits a line of continuous phase transitions and includes the general epidemic process (GEP) and directed percolation (DP) as special cases. Restricting to perfect immunization in two spatial dimensions we analyze the phase diagram and study the scaling behavior along the phase transition line as well as in the vicinity of the GEP point. We show that mutations lead generically to a crossover from the GEP to DP. Using standard scaling arguments we also predict the form of the phase transition line close to the GEP point. It turns out that the protection gained by immunization is vitally decreased by the occurrence of mutations.Comment: 9 pages, 13 figure

    Dynamics and stability of wind turbine generators

    Get PDF
    Synchronous and induction generators are considered. A comparison is made between wind turbines, steam, and hydro units. The unusual phenomena associated with wind turbines are emphasized. The general control requirements are discussed, as well as various schemes for torsional damping such as speed sensitive stabilizer and blade pitch control. Integration between adjacent wind turbines in a wind farm is also considered

    Absorbing Phase Transitions of Branching-Annihilating Random Walks

    Full text link
    The phase transitions to absorbing states of the branching-annihilating reaction-diffusion processes mA --> (m+k)A, nA --> (n-l)A are studied systematically in one space dimension within a new family of models. Four universality classes of non-trivial critical behavior are found. This provides, in particular, the first evidence of universal scaling laws for pair and triplet processes.Comment: 4 pages, 4 figure

    First order phase transition with a logarithmic singularity in a model with absorbing states

    Full text link
    Recently, Lipowski [cond-mat/0002378] investigated a stochastic lattice model which exhibits a discontinuous transition from an active phase into infinitely many absorbing states. Since the transition is accompanied by an apparent power-law singularity, it was conjectured that the model may combine features of first- and second-order phase transitions. In the present work it is shown that this singularity emerges as an artifact of the definition of the model in terms of products. Instead of a power law, we find a logarithmic singularity at the transition. Moreover, we generalize the model in such a way that the second-order phase transition becomes accessible. As expected, this transition belongs to the universality class of directed percolation.Comment: revtex, 4 pages, 5 eps figure

    Limited genetic diversity among clones of red wine cultivar 'CarmenĂšre' as revealed by microsatellite and AFLP markers

    Get PDF
    'Carmenùre' is a fine red wine cultivar (Vitis vinifera L.) that has spread, unrecorded from France to  other countries. It probably arrived in Chile before the Phylloxera crisis in Europe where it remained confused with Merlot and other red wine cultivars until the mid 1990s. In this study, genetic diversity among 26 accessions from Chile, France and Italy was analysed using microsatellite (SSR) and AFLP markers. Using 20 SSR markers, a “standard genotype” was established and three different haplotypes were found, presumably arising by a mutation at the VVMD7 and VMC5g7 loci. In the case of AFLP, using 11 primer combinations five groups were identified, with one main cluster of 22 accessions not differentiated. Combining both techniques it was possible to identify five out of the 26 accessions analysed. Together, these results suggest that 'Carmenùre' exhibits a lower genetic diversity in comparison with other French red wine cultivars. This is a factor to consider when managing a clonal selection assay. Possible causes are discussed.

    Epidemic processes with immunization

    Full text link
    We study a model of directed percolation (DP) with immunization, i.e. with different probabilities for the first infection and subsequent infections. The immunization effect leads to an additional non-Markovian term in the corresponding field theoretical action. We consider immunization as a small perturbation around the DP fixed point in d<6, where the non-Markovian term is relevant. The immunization causes the system to be driven away from the neighbourhood of the DP critical point. In order to investigate the dynamical critical behaviour of the model, we consider the limits of low and high first infection rate, while the second infection rate remains constant at the DP critical value. Scaling arguments are applied to obtain an expression for the survival probability in both limits. The corresponding exponents are written in terms of the critical exponents for ordinary DP and DP with a wall. We find that the survival probability does not obey a power law behaviour, decaying instead as a stretched exponential in the low first infection probability limit and to a constant in the high first infection probability limit. The theoretical predictions are confirmed by optimized numerical simulations in 1+1 dimensions.Comment: 12 pages, 11 figures. v.2: minor correction

    Multifractal current distribution in random diode networks

    Full text link
    Recently it has been shown analytically that electric currents in a random diode network are distributed in a multifractal manner [O. Stenull and H. K. Janssen, Europhys. Lett. 55, 691 (2001)]. In the present work we investigate the multifractal properties of a random diode network at the critical point by numerical simulations. We analyze the currents running on a directed percolation cluster and confirm the field-theoretic predictions for the scaling behavior of moments of the current distribution. It is pointed out that a random diode network is a particularly good candidate for a possible experimental realization of directed percolation.Comment: RevTeX, 4 pages, 5 eps figure

    Explosive Ising

    Full text link
    We study a two-dimensional kinetic Ising model with Swendsen-Wang dynamics, replacing the usual percolation on top of Ising clusters by explosive percolation. The model exhibits a reversible first-order phase transition with hysteresis. Surprisingly, at the transition flanks the global bond density seems to be equal to the percolation thresholds.Comment: 7 pages, 5 figure

    Phase transition of the one-dimensional coagulation-production process

    Full text link
    Recently an exact solution has been found (M.Henkel and H.Hinrichsen, cond-mat/0010062) for the 1d coagulation production process: 2A ->A, A0A->3A with equal diffusion and coagulation rates. This model evolves into the inactive phase independently of the production rate with t−1/2t^{-1/2} density decay law. Here I show that cluster mean-field approximations and Monte Carlo simulations predict a continuous phase transition for higher diffusion/coagulation rates as considered in cond-mat/0010062. Numerical evidence is given that the phase transition universality agrees with that of the annihilation-fission model with low diffusions.Comment: 4 pages, 4 figures include

    A precise approximation for directed percolation in d=1+1

    Full text link
    We introduce an approximation specific to a continuous model for directed percolation, which is strictly equivalent to 1+1 dimensional directed bond percolation. We find that the critical exponent associated to the order parameter (percolation probability) is beta=(1-1/\sqrt{5})/2=0.276393202..., in remarkable agreement with the best current numerical estimate beta=0.276486(8).Comment: 4 pages, 3 EPS figures; Submitted to Physical Review Letters v2: minor typos + 1 major typo in Eq. (30) correcte
    • 

    corecore