468 research outputs found

    MgB2 tunnel junctions and 19 K low-noise dc superconducting quantum interference devices

    Get PDF
    Point contact junctions made from two pieces of MgB2 can be adjusted to exhibit either superconductor-insulator-superconductor (SIS) or superconductor-normal metal-superconductor (SNS) current-voltage characteristics. The SIS characteristics are in good agreement with the standard tunneling model for s-wave superconductors, and yield an energy gap of (2.02 +/- 0.08) meV. The SNS characteristics are in good agreement with the predictions of the resistively-shunted junction model. DC Superconducting QUantum Interference Devices made from two SNS junctions yield magnetic field noise as low as 35 fT/Hz^{1/2} at 19 K.Comment: 4 pages, 4 figure

    Velocity Measurements at the Metamagnetic Transition in UPt3

    Get PDF

    Probing the Phase Diagram of Bi2Sr2CaCu2O8+d with Tunneling Spectroscopy

    Get PDF
    Tunneling measurements are performed on Ca-rich single crystals of Bi2Sr2CaCu2O8+d (Bi2212), with various oxygen doping levels, using a novel point contact method. At 4.2 K, SIN and SIS tunnel junctions are obtained with well-defined quasiparticle peaks, robust dip and hump features and in some cases Josephson currents. The doping dependence of tunneling conductances of Ca-rich Bi2212 are analyzed and compared to stoichiometric Bi2212. A similar profile of energy gap vs. doping concentration is found although the Ca-rich samples have a slighly smaller optimum Tc and therefore smaller gap values for any doping level. The evolution of tunneling conductance peak height to background ratios with hole concentration are compared. For a given doping level, the Ca-rich spectra showed more broadened features compared to the stoichiometric counterparts, most likely due to increased disorder from the excess Ca. Comparison of the dip and hump features has provided some potential insights into their origins.Comment: 4 pages, 4 figures; presented at the Applied Superconductivity Conference (August 4-9, 2002) in Houston, TX; to be published in IEEE Trans. Appl. Supercon

    On the Reconstructed Fermi Surface in the Underdoped Cuprates

    Get PDF
    The Fermi surface topologies of underdoped samples the high-Tc superconductor Bi2212 have been measured with angle resolved photoemission. By examining thermally excited states above the Fermi level, we show that the Fermi surfaces in the pseudogap phase of underdoped samples are actually composed of fully enclosed hole pockets. The spectral weight of these pockets is vanishingly small at the anti-ferromagnetic zone boundary, which creates the illusion of Fermi "arcs" in standard photoemission measurements. The area of the pockets as measured in this study is consistent with the doping level, and hence carrier density, of the samples measured. Furthermore, the shape and area of the pockets is well reproduced by a phenomenological model of the pseudogap phase as a spin liquid.Comment: 4 pages, 4 figures. Submitted to Physics Review Letter
    corecore