14 research outputs found

    Characterization of Coding Synonymous and Non-Synonymous Variants in ADAMTS13 Using Ex Vivo and In Silico Approaches

    Get PDF
    Synonymous variations, which are defined as codon substitutions that do not change the encoded amino acid, were previously thought to have no effect on the properties of the synthesized protein(s). However, mounting evidence shows that these “silent” variations can have a significant impact on protein expression and function and should no longer be considered “silent”. Here, the effects of six synonymous and six non-synonymous variations, previously found in the gene of ADAMTS13, the von Willebrand Factor (VWF) cleaving hemostatic protease, have been investigated using a variety of approaches. The ADAMTS13 mRNA and protein expression levels, as well as the conformation and activity of the variants have been compared to that of wild-type ADAMTS13. Interestingly, not only the non-synonymous variants but also the synonymous variants have been found to change the protein expression levels, conformation and function. Bioinformatic analysis of ADAMTS13 mRNA structure, amino acid conservation and codon usage allowed us to establish correlations between mRNA stability, RSCU, and intracellular protein expression. This study demonstrates that variants and more specifically, synonymous variants can have a substantial and definite effect on ADAMTS13 function and that bioinformatic analysis may allow development of predictive tools to identify variants that will have significant effects on the encoded protein

    Dysregulation of PRMT5 in chronic lymphocytic leukemia promotes progression with high risk of Richter's transformation

    Get PDF
    : Richter's Transformation (RT) is a poorly understood and fatal progression of chronic lymphocytic leukemia (CLL) manifesting histologically as diffuse large B-cell lymphoma. Protein arginine methyltransferase 5 (PRMT5) is implicated in lymphomagenesis, but its role in CLL or RT progression is unknown. We demonstrate herein that tumors uniformly overexpress PRMT5 in patients with progression to RT. Furthermore, mice with B-specific overexpression of hPRMT5 develop a B-lymphoid expansion with increased risk of death, and Eµ-PRMT5/TCL1 double transgenic mice develop a highly aggressive disease with transformation that histologically resembles RT; where large-scale transcriptional profiling identifies oncogenic pathways mediating PRMT5-driven disease progression. Lastly, we report the development of a SAM-competitive PRMT5 inhibitor, PRT382, with exclusive selectivity and optimal in vitro and in vivo activity compared to available PRMT5 inhibitors. Taken together, the discovery that PRMT5 drives oncogenic pathways promoting RT provides a compelling rationale for clinical investigation of PRMT5 inhibitors such as PRT382 in aggressive CLL/RT cases

    Chronic social stress induces DNA methylation changes at an evolutionary conserved intergenic region in chromosome X

    No full text
    <p>Chronic stress resulting from prolonged exposure to negative life events increases the risk of mood and anxiety disorders. Although chronic stress can change gene expression relevant for behavior, molecular regulators of this change have not been fully determined. One process that could play a role is DNA methylation, an epigenetic process whereby a methyl group is added onto nucleotides, predominantly cytosine in the CpG context, and which can be induced by chronic stress. It is unknown to what extent chronic social defeat, a model of human social stress, influences DNA methylation patterns across the genome. Our study addressed this question by using a targeted-capture approach called Methyl-Seq to investigate DNA methylation patterns of the dentate gyrus at putative regulatory regions across the mouse genome from mice exposed to 14 days of social defeat. Findings were replicated in independent cohorts by bisulfite-pyrosequencing. Two differentially methylated regions (DMRs) were identified. One DMR was located at intron 9 of <i>Drosha</i>, and it showed reduced methylation in stressed mice. This observation replicated in one of two independent cohorts. A second DMR was identified at an intergenic region of chromosome X, and methylation in this region was increased in stressed mice. This methylation difference replicated in two independent cohorts and in Major Depressive Disorder (MDD) postmortem brains. These results highlight a region not previously known to be differentially methylated by chronic social defeat stress and which may be involved in MDD.</p
    corecore