12 research outputs found

    <sub>Probiotics and Other Bioactive Compounds with Proven Effect against Obesity and Hypertension: Food Design Opportunities from Lulo Fruit (<em>Solanum quitoense</em>)</sub>

    Get PDF
    This book chapter aims to identify those bioactive compounds that are the most effective in obesity and hypertension prevention and/or treatment, these being the two main disorders associated with metabolic syndrome. Focusing on probiotics and phytochemicals, the document will provide evidences from both in vitro and in vivo studies as well as information about the action mechanisms and how they are affected by the interaction with other food ingredients, the food matrix in which they are placed, etc. Given its high antioxidant capacity, in part due to its spermidine content, lulo fruit has generated considerable interest among health researchers. This, together with its exotic organoleptic properties, offers interesting growth opportunities for the design of new food products from lulo fruit. This book chapter will also discuss some of them

    Potential Use of Vacuum Impregnation and High-Pressure Homogenization to Obtain Functional Products from Lulo Fruit (Solanum quitoense Lam.)

    Full text link
    [EN] Lulo (Solanum quitoense Lam.) is a Colombian fruit that is mostly used in the preparation of homemade juice as well as natural remedy for hypertension. The aim of this study was to determine physicochemical and antioxidant properties (antioxidant capacity, total phenols, flavonoids and spermidine content, and polyphenolic compounds profile by liquid chromatography¿mass spectrometry (LC-MS)) of the lulo fruit and its juice. Additionally, vacuum impregnation (VI) properties of the fruit and the effect of high homogenization pressure (50, 100, and 150 MPa) on the juice properties were studied. The results revealed a good availability and impregnation capacity of the pores in fruits with similar maturity index. The main differences observed between the juice and fruit derive from removing solids and bioactive components in the filtering operation. However, the effect of high-pressure homogenization (HPH) on particle size and bioactive compounds increases the antiradical capacity of the juice and the diversity in polyphenolics when increasing the homogenization pressure.Authors thank the grant provided to Leidy I. Hinestroza by Technological University of Choco-Colombia [Fortalecimiento de los Encadenamientos Productivos de las Subregiones del Choco. BPIN 2013000100284].Hinestroza-Córdoba, LI.; Barrera Puigdollers, C.; Seguí Gil, L.; Betoret Valls, N. (2021). Potential Use of Vacuum Impregnation and High-Pressure Homogenization to Obtain Functional Products from Lulo Fruit (Solanum quitoense Lam.). Foods. 10(4):1-16. https://doi.org/10.3390/foods10040817S11610

    Fermentation of Lulo Juice with Lactobacillus reuteri CECT 925. Properties and Effect of High Homogenization Pressures on Resistance to In Vitro Gastrointestinal Digestion

    Full text link
    [EN] The aim of this study was to evaluate the use of lulo juice as substrate for producing a potentially probiotic beverage with Lactobacillus reuteri CECT 925. Lulo juices at two pH levels and two levels of HPH treatment have been considered to evaluate the effect of these variables on Lactobacillus reuteri CECT 925 growth, physicochemical and antioxidant properties, and the resistance of microbial cells to gastrointestinal digestion in vitro. Regarding the growth of Lactobacillus reuteri CECT 925, it was mainly affected by the pH of the medium, the rectified juice at pH 5.5 being the most appropriated one. The growth of Lactobacillus reuteri CECT 925 mainly increased the antiradical capacity of the juices. In general, Lactobacillus reuteri CECT 925 showed good resistance to in vitro gastrointestinal digestion conditions, reaching levels above 10(7) CFU/mL in all cases. The highest resistance was observed in the juice treated at 150 MPa followed by the juice homogenized at 100 MPa.Authors thank the grant provided to Leidy I. Hinestroza by Technological University of Chocó-Colombia [Fortalecimiento de los Encadenamientos Productivos de las Subregiones del Chocó. BPIN 2013000100284].Hinestroza-Córdoba, LI.; Betoret, E.; Seguí Gil, L.; Barrera Puigdollers, C.; Betoret Valls, N. (2021). Fermentation of Lulo Juice with Lactobacillus reuteri CECT 925. Properties and Effect of High Homogenization Pressures on Resistance to In Vitro Gastrointestinal Digestion. Applied Sciences. 11(22):1-15. https://doi.org/10.3390/app112210909S115112

    Characterization of Powdered Lulo (Solanum quitoense) Bagasse as a Functional Food Ingredient

    Full text link
    [EN] The stabilization of fruit bagasse by drying and milling technology is a valuable processing technology to improve its durability and preserve its valuable biologically active components. The objective of this study was to evaluate the effect of lyophilization and air temperature (60 degrees C and 70 degrees C) in hot air-drying as well as grinding conditions (coarse or fine granulometry) on physico-chemical properties; water interaction capacity; antioxidant properties; and carotenoid content of powdered lulo bagasse. Air-drying kinetics at 60 degrees C and 70 degrees C and sorption isotherms at 20 degrees C were also determined. Results showed that drying conditions influence antioxidant properties and carotenoid content while granulometry slightly influenced fiber and water interaction properties. Fiber content was near 50% and carotenoid content was higher than 60 mu g/g dry matter in lyophilized powder. This beta-carotene content is comparable to that provided by carrot juice. Air-drying at 60 degrees C only reduced carotenoids content by 10%.This research and APC were funded by Generalitat Valenciana, Project AICO/2017/'049.Hinestroza-Córdoba, LI.; Duarte-Serna, S.; Seguí Gil, L.; Barrera Puigdollers, C.; Betoret Valls, N. (2020). Characterization of Powdered Lulo (Solanum quitoense) Bagasse as a Functional Food Ingredient. Foods. 9(6):1-16. https://doi.org/10.3390/foods9060723S11696Forero, D. P., Orrego, C. E., Peterson, D. G., & Osorio, C. (2015). Chemical and sensory comparison of fresh and dried lulo (Solanum quitoense Lam.) fruit aroma. Food Chemistry, 169, 85-91. doi:10.1016/j.foodchem.2014.07.111Gancel, A.-L., Alter, P., Dhuique-Mayer, C., Ruales, J., & Vaillant, F. (2008). Identifying Carotenoids and Phenolic Compounds In Naranjilla (Solanum quitoense Lam. Var. Puyo Hybrid), an Andean Fruit. Journal of Agricultural and Food Chemistry, 56(24), 11890-11899. doi:10.1021/jf801515pForero, D. P., Masatani, C., Fujimoto, Y., Coy-Barrera, E., Peterson, D. G., & Osorio, C. (2016). Spermidine Derivatives in Lulo (Solanum quitoense Lam.) Fruit: Sensory (Taste) versus Biofunctional (ACE-Inhibition) Properties. Journal of Agricultural and Food Chemistry, 64(26), 5375-5383. doi:10.1021/acs.jafc.6b01631De Moraes Crizel, T., Jablonski, A., de Oliveira Rios, A., Rech, R., & Flôres, S. H. (2013). Dietary fiber from orange byproducts as a potential fat replacer. LWT - Food Science and Technology, 53(1), 9-14. doi:10.1016/j.lwt.2013.02.002Karam, M. C., Petit, J., Zimmer, D., Baudelaire Djantou, E., & Scher, J. (2016). Effects of drying and grinding in production of fruit and vegetable powders: A review. Journal of Food Engineering, 188, 32-49. doi:10.1016/j.jfoodeng.2016.05.001Majerska, J., Michalska, A., & Figiel, A. (2019). A review of new directions in managing fruit and vegetable processing by-products. Trends in Food Science & Technology, 88, 207-219. doi:10.1016/j.tifs.2019.03.021Mimouni, A., Deeth, H. C., Whittaker, A. K., Gidley, M. J., & Bhandari, B. R. (2009). Rehydration process of milk protein concentrate powder monitored by static light scattering. Food Hydrocolloids, 23(7), 1958-1965. doi:10.1016/j.foodhyd.2009.01.010Cai, Y. Z., & Corke, H. (2000). Production and Properties of Spray-dried Amaranthus Betacyanin Pigments. Journal of Food Science, 65(7), 1248-1252. doi:10.1111/j.1365-2621.2000.tb10273.xFreudig, B., Hogekamp, S., & Schubert, H. (1999). Dispersion of powders in liquids in a stirred vessel. Chemical Engineering and Processing: Process Intensification, 38(4-6), 525-532. doi:10.1016/s0255-2701(99)00049-5Raghavendra, S. N., Rastogi, N. K., Raghavarao, K. S. M. S., & Tharanathan, R. N. (2004). Dietary fiber from coconut residue: effects of different treatments and particle size on the hydration properties. European Food Research and Technology, 218(6), 563-567. doi:10.1007/s00217-004-0889-2Robertson, J. A., de Monredon, F. D., Dysseler, P., Guillon, F., Amado, R., & Thibault, J.-F. (2000). Hydration Properties of Dietary Fibre and Resistant Starch: a European Collaborative Study. LWT - Food Science and Technology, 33(2), 72-79. doi:10.1006/fstl.1999.0595Garau, M. C., Simal, S., Rosselló, C., & Femenia, A. (2007). Effect of air-drying temperature on physico-chemical properties of dietary fibre and antioxidant capacity of orange (Citrus aurantium v. Canoneta) by-products. Food Chemistry, 104(3), 1014-1024. doi:10.1016/j.foodchem.2007.01.009Yasumatsu, K., Sawada, K., Moritaka, S., Misaki, M., Toda, J., Wada, T., & Ishii, K. (1972). Whipping and Emulsifying Properties of Soybean Products. Agricultural and Biological Chemistry, 36(5), 719-727. doi:10.1080/00021369.1972.10860321Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 152-178. doi:10.1016/s0076-6879(99)99017-1Wolfe, K., Wu, X., & Liu, R. H. (2003). Antioxidant Activity of Apple Peels. Journal of Agricultural and Food Chemistry, 51(3), 609-614. doi:10.1021/jf020782aLuximon-Ramma, A., Bahorun, T., Crozier, A., Zbarsky, V., Datla, K. P., Dexter, D. T., & Aruoma, O. I. (2005). Characterization of the antioxidant functions of flavonoids and proanthocyanidins in Mauritian black teas. Food Research International, 38(4), 357-367. doi:10.1016/j.foodres.2004.10.005Kuskoski, E. M., Asuero, A. G., Troncoso, A. M., Mancini-Filho, J., & Fett, R. (2005). Aplicación de diversos métodos químicos para determinar actividad antioxidante en pulpa de frutos. Ciência e Tecnologia de Alimentos, 25(4), 726-732. doi:10.1590/s0101-20612005000400016Stratil, P., Klejdus, B., & Kubáň, V. (2006). Determination of Total Content of Phenolic Compounds and Their Antioxidant Activity in VegetablesEvaluation of Spectrophotometric Methods. Journal of Agricultural and Food Chemistry, 54(3), 607-616. doi:10.1021/jf052334jRe, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. doi:10.1016/s0891-5849(98)00315-3Rodrigues, E., Mariutti, L. R. B., & Mercadante, A. Z. (2013). Carotenoids and Phenolic Compounds from Solanum sessiliflorum, an Unexploited Amazonian Fruit, and Their Scavenging Capacities against Reactive Oxygen and Nitrogen Species. Journal of Agricultural and Food Chemistry, 61(12), 3022-3029. doi:10.1021/jf3054214Bunea, A., Andjelkovic, M., Socaciu, C., Bobis, O., Neacsu, M., Verhé, R., & Camp, J. V. (2008). Total and individual carotenoids and phenolic acids content in fresh, refrigerated and processed spinach (Spinacia oleracea L.). Food Chemistry, 108(2), 649-656. doi:10.1016/j.foodchem.2007.11.056Brunauer, S., Deming, L. S., Deming, W. E., & Teller, E. (1940). On a Theory of the van der Waals Adsorption of Gases. Journal of the American Chemical Society, 62(7), 1723-1732. doi:10.1021/ja01864a025Martínez-Las Heras, R., Heredia, A., Castelló, M. L., & Andrés, A. (2014). Moisture sorption isotherms and isosteric heat of sorption of dry persimmon leaves. Food Bioscience, 7, 88-94. doi:10.1016/j.fbio.2014.06.002Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60(2), 309-319. doi:10.1021/ja01269a023Vesterlund, S., Salminen, K., & Salminen, S. (2012). Water activity in dry foods containing live probiotic bacteria should be carefully considered: A case study with Lactobacillus rhamnosus GG in flaxseed. International Journal of Food Microbiology, 157(2), 319-321. doi:10.1016/j.ijfoodmicro.2012.05.016Viuda-Martos, M., Ruiz-Navajas, Y., Martin-Sánchez, A., Sánchez-Zapata, E., Fernández-López, J., Sendra, E., … Pérez-Álvarez, J. A. (2012). Chemical, physico-chemical and functional properties of pomegranate (Punica granatum L.) bagasses powder co-product. Journal of Food Engineering, 110(2), 220-224. doi:10.1016/j.jfoodeng.2011.05.029Llobera, A., & Cañellas, J. (2007). Dietary fibre content and antioxidant activity of Manto Negro red grape (Vitis vinifera): pomace and stem. Food Chemistry, 101(2), 659-666. doi:10.1016/j.foodchem.2006.02.025Sudha, M. L., Baskaran, V., & Leelavathi, K. (2007). Apple pomace as a source of dietary fiber and polyphenols and its effect on the rheological characteristics and cake making. Food Chemistry, 104(2), 686-692. doi:10.1016/j.foodchem.2006.12.016Happi Emaga, T., Robert, C., Ronkart, S. N., Wathelet, B., & Paquot, M. (2008). Dietary fibre components and pectin chemical features of peels during ripening in banana and plantain varieties. Bioresource Technology, 99(10), 4346-4354. doi:10.1016/j.biortech.2007.08.030Figuerola, F., Hurtado, M. L., Estévez, A. M., Chiffelle, I., & Asenjo, F. (2005). Fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment. Food Chemistry, 91(3), 395-401. doi:10.1016/j.foodchem.2004.04.036Amaya-Cruz, D. M., Rodríguez-González, S., Pérez-Ramírez, I. F., Loarca-Piña, G., Amaya-Llano, S., Gallegos-Corona, M. A., & Reynoso-Camacho, R. (2015). Juice by-products as a source of dietary fibre and antioxidants and their effect on hepatic steatosis. Journal of Functional Foods, 17, 93-102. doi:10.1016/j.jff.2015.04.051Larrauri, J. . (1999). New approaches in the preparation of high dietary fibre powders from fruit by-products. Trends in Food Science & Technology, 10(1), 3-8. doi:10.1016/s0924-2244(99)00016-3(2010). Scientific Opinion on Dietary Reference Values for carbohydrates and dietary fibre. EFSA Journal, 8(3). doi:10.2903/j.efsa.2010.1462Viuda-Martos, M., López-Marcos, M. C., Fernández-López, J., Sendra, E., López-Vargas, J. H., & Pérez-Álvarez, J. A. (2010). Role of Fiber in Cardiovascular Diseases: A Review. Comprehensive Reviews in Food Science and Food Safety, 9(2), 240-258. doi:10.1111/j.1541-4337.2009.00102.xLucas-González, R., Viuda-Martos, M., Pérez-Álvarez, J. Á., & Fernández-López, J. (2017). Evaluation of Particle Size Influence on Proximate Composition, Physicochemical, Techno-Functional and Physio-Functional Properties of Flours Obtained from Persimmon (Diospyros kaki Trumb.) Coproducts. Plant Foods for Human Nutrition, 72(1), 67-73. doi:10.1007/s11130-016-0592-zPark, H.-J., Lee, Y., & Eun, J.-B. (2016). Physicochemical characteristics of kimchi powder manufactured by hot air drying and freeze drying. Biocatalysis and Agricultural Biotechnology, 5, 193-198. doi:10.1016/j.bcab.2016.02.002Sousa, A. S. de, Borges, S. V., Magalhães, N. F., Ricardo, H. V., & Azevedo, A. D. (2008). Spray-dried tomato powder: reconstitution properties and colour. Brazilian Archives of Biology and Technology, 51(4), 607-614. doi:10.1590/s1516-89132008000400019Bakar, J., Ee, S. C., Muhammad, K., Hashim, D. M., & Adzahan, N. (2012). Spray-Drying Optimization for Red Pitaya Peel (Hylocereus polyrhizus). Food and Bioprocess Technology, 6(5), 1332-1342. doi:10.1007/s11947-012-0842-5Bhusari, S. N., Muzaffar, K., & Kumar, P. (2014). Effect of carrier agents on physical and microstructural properties of spray dried tamarind pulp powder. Powder Technology, 266, 354-364. doi:10.1016/j.powtec.2014.06.038Ahmed, A. M., Ishida, Y., & Shimamoto, T. (2009). Molecular characterization of antimicrobial resistance inSalmonellaisolated from animals in Japan. Journal of Applied Microbiology, 106(2), 402-409. doi:10.1111/j.1365-2672.2008.04009.xLecumberri, E., Mateos, R., Izquierdo-Pulido, M., Rupérez, P., Goya, L., & Bravo, L. (2007). Dietary fibre composition, antioxidant capacity and physico-chemical properties of a fibre-rich product from cocoa (Theobroma cacao L.). Food Chemistry, 104(3), 948-954. doi:10.1016/j.foodchem.2006.12.054Serna-Cock, L., Torres-León, C., & Ayala-Aponte, A. (2015). Evaluación de Polvos Alimentarios obtenidos de Cáscaras de Mango (Mangifera indica) como fuente de Ingredientes Funcionales. Información tecnológica, 26(2), 41-50. doi:10.4067/s0718-07642015000200006Karnik, D., & Wicker, L. (2018). Emulsion stability of sugar beet pectin fractions obtained by isopropanol fractionation. Food Hydrocolloids, 74, 249-254. doi:10.1016/j.foodhyd.2017.07.041Martínez-Las Heras, R., Landines, E. F., Heredia, A., Castelló, M. L., & Andrés, A. (2017). Influence of drying process and particle size of persimmon fibre on its physicochemical, antioxidant, hydration and emulsifying properties. Journal of Food Science and Technology, 54(9), 2902-2912. doi:10.1007/s13197-017-2728-zMphahlele, R. R., Fawole, O. A., Makunga, N. P., & Opara, U. L. (2016). Effect of drying on the bioactive compounds, antioxidant, antibacterial and antityrosinase activities of pomegranate peel. BMC Complementary and Alternative Medicine, 16(1). doi:10.1186/s12906-016-1132-yCrozier, S. J., Preston, A. G., Hurst, J. W., Payne, M. J., Mann, J., Hainly, L., & Miller, D. L. (2011). Cacao seeds are a «Super Fruit»: A comparative analysis of various fruit powders and products. Chemistry Central Journal, 5(1). doi:10.1186/1752-153x-5-5Michalska, A., Wojdyło, A., Lech, K., Łysiak, G. P., & Figiel, A. (2017). Effect of different drying techniques on physical properties, total polyphenols and antioxidant capacity of blackcurrant pomace powders. LWT, 78, 114-121. doi:10.1016/j.lwt.2016.12.008Dorta, E., Lobo, M. G., & Gonzalez, M. (2011). Reutilization of Mango Byproducts: Study of the Effect of Extraction Solvent and Temperature on Their Antioxidant Properties. Journal of Food Science, 77(1), C80-C88. doi:10.1111/j.1750-3841.2011.02477.xRana, S., Gupta, S., Rana, A., & Bhushan, S. (2015). Functional properties, phenolic constituents and antioxidant potential of industrial apple pomace for utilization as active food ingredient. Food Science and Human Wellness, 4(4), 180-187. doi:10.1016/j.fshw.2015.10.001Ozgen, M., Reese, R. N., Tulio, A. Z., Scheerens, J. C., & Miller, A. R. (2006). Modified 2,2-Azino-bis-3-ethylbenzothiazoline-6-sulfonic Acid (ABTS) Method to Measure Antioxidant Capacity of Selected Small Fruits and Comparison to Ferric Reducing Antioxidant Power (FRAP) and 2,2‘-Diphenyl-1-picrylhydrazyl (DPPH) Methods. Journal of Agricultural and Food Chemistry, 54(4), 1151-1157. doi:10.1021/jf051960dDel Caro, A., Piga, A., Vacca, V., & Agabbio, M. (2004). Changes of flavonoids, vitamin C and antioxidant capacity in minimally processed citrus segments and juices during storage. Food Chemistry, 84(1), 99-105. doi:10.1016/s0308-8146(03)00180-8Silva, L. M. R. da, Figueiredo, E. A. T. de, Ricardo, N. M. P. S., Vieira, I. G. P., Figueiredo, R. W. de, Brasil, I. M., & Gomes, C. L. (2014). Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil. Food Chemistry, 143, 398-404. doi:10.1016/j.foodchem.2013.08.001Albanese, D., Adiletta, G., D′Acunto, M., Cinquanta, L., & Di Matteo, M. (2014). Tomato peel drying and carotenoids stability of the extracts. International Journal of Food Science & Technology, 49(11), 2458-2463. doi:10.1111/ijfs.12602Bub, A., Watzl, B., Abrahamse, L., Delincée, H., Adam, S., Wever, J., … Rechkemmer, G. (2000). Moderate Intervention with Carotenoid-Rich Vegetable Products Reduces Lipid Peroxidation in Men. The Journal of Nutrition, 130(9), 2200-2206. doi:10.1093/jn/130.9.220

    High Homogenization Pressures to Improve Food Quality, Functionality and Sustainability

    Full text link
    [EN] Interest in high homogenization pressure technology has grown over the years. It is a green technology with low energy consumption that does not generate high CO2 emissions or polluting effluents. Its main food applications derive from its effect on particle size, causing a more homogeneous distribution of fluid elements (particles, globules, droplets, aggregates, etc.) and favoring the release of intracellular components, and from its effect on the structure and configuration of chemical components such as polyphenols and macromolecules such as carbohydrates (fibers) and proteins (also microorganisms and enzymes). The challenges of the 21st century are leading the processed food industry towards the creation of food of high nutritional quality and the use of waste to obtain ingredients with specific properties. For this purpose, soft and nonthermal technologies such as high pressure homogenization have huge potential. The objective of this work is to review how the need to combine safety, functionality and sustainability in the food industry has conditioned the application of high-pressure homogenization technology in the last decade.This research and APC were funded by Generalitat Valenciana, Project AICO/2017/049. The authors thank the research project "Fortalecimiento de los Encadenamientos Productivos de las Subregiones del Chocó" BPIN 2013000100284 Tecnológica del Chocó (in Spanish) by financial support to Leidy Indira Hinestroza-Córdoba.Mesa, J.; Hinestroza-Córdoba, LI.; Barrera Puigdollers, C.; Seguí Gil, L.; Betoret, E.; Betoret Valls, N. (2020). High Homogenization Pressures to Improve Food Quality, Functionality and Sustainability. Molecules. 25(14):1-19. https://doi.org/10.3390/molecules25143305S1192514BEVILACQUA, A., CAMPANIELLO, D., SPERANZA, B., ALTIERI, C., SINIGAGLIA, M., & CORBO, M. R. (2019). Two Nonthermal Technologies for Food Safety and Quality—Ultrasound and High Pressure Homogenization: Effects on Microorganisms, Advances, and Possibilities: A Review. Journal of Food Protection, 82(12), 2049-2064. doi:10.4315/0362-028x.jfp-19-059Picart-Palmade, L., Cunault, C., Chevalier-Lucia, D., Belleville, M.-P., & Marchesseau, S. (2019). Potentialities and Limits of Some Non-thermal Technologies to Improve Sustainability of Food Processing. Frontiers in Nutrition, 5. doi:10.3389/fnut.2018.00130Pandolfe, W. D. (1982). Development of the New Gaulin Micro-Gap™ Homogenizing Valve. Journal of Dairy Science, 65(10), 2035-2044. doi:10.3168/jds.s0022-0302(82)82456-9Patrignani, F., Siroli, L., Braschi, G., & Lanciotti, R. (2020). Combined use of natural antimicrobial based nanoemulsions and ultra high pressure homogenization to increase safety and shelf-life of apple juice. Food Control, 111, 107051. doi:10.1016/j.foodcont.2019.107051Calligaris, S., Foschia, M., Bartolomeoli, I., Maifreni, M., & Manzocco, L. (2012). Study on the applicability of high-pressure homogenization for the production of banana juices. LWT - Food Science and Technology, 45(1), 117-121. doi:10.1016/j.lwt.2011.07.026Tabanelli, G., Patrignani, F., Vinderola, G., Reinheimer, J. A., Gardini, F., & Lanciotti, R. (2013). Effect of sub-lethal high pressure homogenization treatments on the in vitro functional and biological properties of lactic acid bacteria. LWT - Food Science and Technology, 53(2), 580-586. doi:10.1016/j.lwt.2013.03.013Guan, Y., Zhou, L., Bi, J., Yi, J., Liu, X., Chen, Q., … Zhou, M. (2016). Change of microbial and quality attributes of mango juice treated by high pressure homogenization combined with moderate inlet temperatures during storage. Innovative Food Science & Emerging Technologies, 36, 320-329. doi:10.1016/j.ifset.2016.07.009Xia, X., Dai, Y., Wu, H., Liu, X., Wang, Y., Cao, J., & Zhou, J. (2019). Effects of pressure and multiple passes on the physicochemical and microbial characteristics of lupin‐based beverage treated with high‐pressure homogenization. Journal of Food Processing and Preservation, 43(4), e13912. doi:10.1111/jfpp.13912Benjamin, O., & Gamrasni, D. (2020). Microbial, nutritional, and organoleptic quality of pomegranate juice following high‐pressure homogenization and low‐temperature pasteurization. Journal of Food Science, 85(3), 592-599. doi:10.1111/1750-3841.15032Pinho, C. R. G., Franchi, M. A., Tribst, A. A. L., & Cristianini, M. (2011). Effect of Ultra High Pressure Homogenization on Alkaline Phosphatase and Lactoperoxidase Activity in Raw Skim Milk. Procedia Food Science, 1, 874-878. doi:10.1016/j.profoo.2011.09.132Mercan, E., Sert, D., & Akın, N. (2018). Determination of powder flow properties of skim milk powder produced from high-pressure homogenization treated milk concentrates during storage. LWT, 97, 279-288. doi:10.1016/j.lwt.2018.07.002Valencia-Flores, D. C., Hernández-Herrero, M., Guamis, B., & Ferragut, V. (2013). Comparing the Effects of Ultra-High-Pressure Homogenization and Conventional Thermal Treatments on the Microbiological, Physical, and Chemical Quality of Almond Beverages. Journal of Food Science, 78(2), E199-E205. doi:10.1111/1750-3841.12029Bevilacqua, A., Casanova, F. P., Petruzzi, L., Sinigaglia, M., & Corbo, M. R. (2016). Using physical approaches for the attenuation of lactic acid bacteria in an organic rice beverage. Food Microbiology, 53, 1-8. doi:10.1016/j.fm.2015.08.005Codina-Torrella, I., Guamis, B., Zamora, A., Quevedo, J. M., & Trujillo, A. J. (2018). Microbiological stabilization of tiger nuts’ milk beverage using ultra-high pressure homogenization. A preliminary study on microbial shelf-life extension. Food Microbiology, 69, 143-150. doi:10.1016/j.fm.2017.08.002Franchi, M. A., Tribst, A. A. L., & Cristianini, M. (2011). Inactivation of Lactobacillus brevis in Beer Utilizing a Combination of High-Pressure Homogenization and Lysozyme Treatment. Journal of the Institute of Brewing, 117(4), 634-638. doi:10.1002/j.2050-0416.2011.tb00515.xFranchi, M. A., Tribst, A. A. L., & Cristianini, M. (2013). High-pressure homogenization: a non-thermal process applied for inactivation of spoilage microorganisms in beer. Journal of the Institute of Brewing, 119(4), 237-241. doi:10.1002/jib.99Comuzzo, P., Calligaris, S., Iacumin, L., Ginaldi, F., Palacios Paz, A. E., & Zironi, R. (2015). Potential of high pressure homogenization to induce autolysis of wine yeasts. Food Chemistry, 185, 340-348. doi:10.1016/j.foodchem.2015.03.129Capra, M. L., Patrignani, F., Quiberoni, A. del L., Reinheimer, J. A., Lanciotti, R., & Guerzoni, M. E. (2009). Effect of high pressure homogenization on lactic acid bacteria phages and probiotic bacteria phages. International Dairy Journal, 19(5), 336-341. doi:10.1016/j.idairyj.2008.11.002Patrignani, F., Vannini, L., Kamdem, S. L. S., Lanciotti, R., & Guerzoni, M. E. (2010). Potentialities of High-Pressure Homogenization to Inactivate Zygosaccharomyces bailii in Fruit Juices. Journal of Food Science, 75(2), M116-M120. doi:10.1111/j.1750-3841.2009.01508.xDos Santos Aguilar, J. G., Cristianini, M., & Sato, H. H. (2018). Modification of enzymes by use of high-pressure homogenization. Food Research International, 109, 120-125. doi:10.1016/j.foodres.2018.04.011Bot, F., Calligaris, S., Cortella, G., Plazzotta, S., Nocera, F., & Anese, M. (2018). Study on high pressure homogenization and high power ultrasound effectiveness in inhibiting polyphenoloxidase activity in apple juice. Journal of Food Engineering, 221, 70-76. doi:10.1016/j.jfoodeng.2017.10.009Plazzotta, S., & Manzocco, L. (2019). High-pressure homogenisation combined with blanching to turn lettuce waste into a physically stable juice. Innovative Food Science & Emerging Technologies, 52, 136-144. doi:10.1016/j.ifset.2018.11.008Oliveira, M. M. de, Leite Júnior, B. R. de C., Tribst, A. A. L., & Cristianini, M. (2018). Use of high pressure homogenization to reduce milk proteolysis caused by Pseudomonas fluorescens protease. LWT, 92, 272-275. doi:10.1016/j.lwt.2018.02.052Tribst, A. A. L., & Cristianini, M. (2012). Changes in commercial glucose oxidase activity by high pressure homogenization. Innovative Food Science & Emerging Technologies, 16, 355-360. doi:10.1016/j.ifset.2012.08.002Dong, X., Zhao, M., Shi, J., Yang, B., Li, J., Luo, D., … Jiang, Y. (2011). Effects of combined high-pressure homogenization and enzymatic treatment on extraction yield, hydrolysis and function properties of peanut proteins. Innovative Food Science & Emerging Technologies, 12(4), 478-483. doi:10.1016/j.ifset.2011.07.002Tribst, A. A. L., Ribeiro, L. R., & Cristianini, M. (2017). Comparison of the effects of high pressure homogenization and high pressure processing on the enzyme activity and antimicrobial profile of lysozyme. Innovative Food Science & Emerging Technologies, 43, 60-67. doi:10.1016/j.ifset.2017.07.026Iucci, L., Patrignani, F., Vallicelli, M., Guerzoni, M. E., & Lanciotti, R. (2007). Effects of high pressure homogenization on the activity of lysozyme and lactoferrin against Listeria monocytogenes. Food Control, 18(5), 558-565. doi:10.1016/j.foodcont.2006.01.005Zhu, X., Cheng, Y., Chen, P., Peng, P., Liu, S., Li, D., & Ruan, R. (2016). Effect of alkaline and high-pressure homogenization on the extraction of phenolic acids from potato peels. Innovative Food Science & Emerging Technologies, 37, 91-97. doi:10.1016/j.ifset.2016.08.006Xie, F., Zhang, W., Lan, X., Gong, S., Wu, J., & Wang, Z. (2018). Effects of high hydrostatic pressure and high pressure homogenization processing on characteristics of potato peel waste pectin. Carbohydrate Polymers, 196, 474-482. doi:10.1016/j.carbpol.2018.05.061Wang, W., Zhang, K., Li, C., Cheng, S., Zhou, J., & Wu, Z. (2018). A novel biodegradable film from edible mushroom ( F . velutipes ) by product: Microstructure, mechanical and barrier properties associated with the fiber morphology. Innovative Food Science & Emerging Technologies, 47, 153-160. doi:10.1016/j.ifset.2018.02.004Wu, H., Xiao, D., Lu, J., Jiao, C., Li, S., Lei, Y., … Li, S. (2020). Effect of high-pressure homogenization on microstructure and properties of pomelo peel flour film-forming dispersions and their resultant films. Food Hydrocolloids, 102, 105628. doi:10.1016/j.foodhyd.2019.105628Saricaoglu, F. T., Atalar, I., Yilmaz, V. A., Odabas, H. I., & Gul, O. (2019). Application of multi pass high pressure homogenization to improve stability, physical and bioactive properties of rosehip (Rosa canina L.) nectar. Food Chemistry, 282, 67-75. doi:10.1016/j.foodchem.2019.01.002Plazzotta, S., & Manzocco, L. (2018). Effect of ultrasounds and high pressure homogenization on the extraction of antioxidant polyphenols from lettuce waste. Innovative Food Science & Emerging Technologies, 50, 11-19. doi:10.1016/j.ifset.2018.10.004Huang, X., Tu, Z., Xiao, H., Li, Z., Zhang, Q., Wang, H., … Zhang, L. (2013). Dynamic high pressure microfluidization-assisted extraction and antioxidant activities of sweet potato (Ipomoea batatas L.) leaves flavonoid. Food and Bioproducts Processing, 91(1), 1-6. doi:10.1016/j.fbp.2012.07.006Rommi, K., Rahikainen, J., Vartiainen, J., Holopainen, U., Lahtinen, P., Honkapää, K., & Lantto, R. (2015). Potato peeling costreams as raw materials for biopolymer film preparation. Journal of Applied Polymer Science, 133(5), n/a-n/a. doi:10.1002/app.42862Xie, Y., Ho, S.-H., Chen, C.-N. N., Chen, C.-Y., Jing, K., Ng, I.-S., … Lu, Y. (2016). Disruption of thermo-tolerant Desmodesmus sp. F51 in high pressure homogenization as a prelude to carotenoids extraction. Biochemical Engineering Journal, 109, 243-251. doi:10.1016/j.bej.2016.01.003Saricaoglu, F. T., Gul, O., Besir, A., & Atalar, I. (2018). Effect of high pressure homogenization (HPH) on functional and rheological properties of hazelnut meal proteins obtained from hazelnut oil industry by-products. Journal of Food Engineering, 233, 98-108. doi:10.1016/j.jfoodeng.2018.04.003Zhang, W., Xie, F., Lan, X., Gong, S., & Wang, Z. (2018). Characteristics of pectin from black cherry tomato waste modified by dynamic high-pressure microfluidization. Journal of Food Engineering, 216, 90-97. doi:10.1016/j.jfoodeng.2017.07.032Otoni, C. G., Lodi, B. D., Lorevice, M. V., Leitão, R. C., Ferreira, M. D., Moura, M. R. de, & Mattoso, L. H. C. (2018). Optimized and scaled-up production of cellulose-reinforced biodegradable composite films made up of carrot processing waste. Industrial Crops and Products, 121, 66-72. doi:10.1016/j.indcrop.2018.05.003Xing, J., Cheng, Y., Chen, P., Shan, L., Ruan, R., Li, D., & Wang, L. (2019). Effect of high-pressure homogenization on the extraction of sulforaphane from broccoli (Brassica oleracea) seeds. Powder Technology, 358, 103-109. doi:10.1016/j.powtec.2018.12.010Mustafa, W., Pataro, G., Ferrari, G., & Donsì, F. (2018). Novel approaches to oil structuring via the addition of high-pressure homogenized agri-food residues and water forming capillary bridges. Journal of Food Engineering, 236, 9-18. doi:10.1016/j.jfoodeng.2018.05.003Griffin, S., Sarfraz, M., Farida, V., Nasim, M. J., Ebokaiwe, A. P., Keck, C. M., & Jacob, C. (2018). No time to waste organic waste: Nanosizing converts remains of food processing into refined materials. Journal of Environmental Management, 210, 114-121. doi:10.1016/j.jenvman.2017.12.084Ilyas, R. A., Sapuan, S. M., Ishak, M. R., & Zainudin, E. S. (2019). Sugar palm nanofibrillated cellulose (Arenga pinnata (Wurmb.) Merr): Effect of cycles on their yield, physic-chemical, morphological and thermal behavior. International Journal of Biological Macromolecules, 123, 379-388. doi:10.1016/j.ijbiomac.2018.11.124Jurić, S., Ferrari, G., Velikov, K. P., & Donsì, F. (2019). High-pressure homogenization treatment to recover bioactive compounds from tomato peels. Journal of Food Engineering, 262, 170-180. doi:10.1016/j.jfoodeng.2019.06.011Zhang, Y., Shi, R., Xu, Y., Chen, M., Zhang, J., Gao, Q., & Li, J. (2020). Developing a stable high-performance soybean meal-based adhesive using a simple high-pressure homogenization technology. Journal of Cleaner Production, 256, 120336. doi:10.1016/j.jclepro.2020.120336Sentandreu, E., Stinco, C. M., Vicario, I. M., Mapelli-Brahm, P., Navarro, J. L., & Meléndez-Martínez, A. J. (2020). High-pressure homogenization as compared to pasteurization as a sustainable approach to obtain mandarin juices with improved bioaccessibility of carotenoids and flavonoids. Journal of Cleaner Production, 262, 121325. doi:10.1016/j.jclepro.2020.121325Quan, W., Tao, Y., Qie, X., Zeng, M., Qin, F., Chen, J., & He, Z. (2020). Effects of high-pressure homogenization, thermal processing, and milk matrix on the in vitro bioaccessibility of phenolic compounds in pomelo and kiwi juices. Journal of Functional Foods, 64, 103633. doi:10.1016/j.jff.2019.103633Alongi, M., Calligaris, S., & Anese, M. (2019). Fat concentration and high-pressure homogenization affect chlorogenic acid bioaccessibility and α-glucosidase inhibitory capacity of milk-based coffee beverages. Journal of Functional Foods, 58, 130-137. doi:10.1016/j.jff.2019.04.057Betoret, E., Calabuig-Jiménez, L., Patrignani, F., Lanciotti, R., & Dalla Rosa, M. (2017). Effect of high pressure processing and trehalose addition on functional properties of mandarin juice enriched with probiotic microorganisms. LWT - Food Science and Technology, 85, 418-422. doi:10.1016/j.lwt.2016.10.036Munekata, P. E. S., Domínguez, R., Budaraju, S., Roselló-Soto, E., Barba, F. J., Mallikarjunan, K., … Lorenzo, J. M. (2020). Effect of Innovative Food Processing Technologies on the Physicochemical and Nutritional Properties and Quality of Non-Dairy Plant-Based Beverages. Foods, 9(3), 288. doi:10.3390/foods9030288Toro-Funes, N., Bosch-Fusté, J., Veciana-Nogués, M. T., & Vidal-Carou, M. C. (2014). Influence of Ultra-high-Pressure Homogenization Treatment on the Phytosterols, Tocopherols, and Polyamines of Almond Beverage. Journal of Agricultural and Food Chemistry, 62(39), 9539-9543. doi:10.1021/jf503324fAtalar, I. (2019). Functional kefir production from high pressure homogenized hazelnut milk. LWT, 107, 256-263. doi:10.1016/j.lwt.2019.03.013Kapoor, R., Pathak, S., Najmi, A. K., Aeri, V., & Panda, B. P. (2014). Processing of soy functional food using high pressure homogenization for improved nutritional and therapeutic benefits. Innovative Food Science & Emerging Technologies, 26, 490-497. doi:10.1016/j.ifset.2014.05.015Jiang, T., Liao, W., & Charcosset, C. (2020). Recent advances in encapsulation of curcumin in nanoemulsions: A review of encapsulation technologies, bioaccessibility and applications. Food Research International, 132, 109035. doi:10.1016/j.foodres.2020.109035Frank, K., Köhler, K., & Schuchmann, H. P. (2012). Stability of anthocyanins in high pressure homogenisation. Food Chemistry, 130(3), 716-719. doi:10.1016/j.foodchem.2011.07.086Patrignani, F., Siroli, L., Serrazanetti, D. I., Braschi, G., Betoret, E., Reinheimer, J. A., & Lanciotti, R. (2017). Microencapsulation of functional strains by high pressure homogenization for a potential use in fermented milk. Food Research International, 97, 250-257. doi:10.1016/j.foodres.2017.04.020Calabuig-Jiménez, L., Betoret, E., Betoret, N., Patrignani, F., Barrera, C., Seguí, L., … Dalla Rosa, M. (2019). High pressures homogenization (HPH) to microencapsulate L. salivarius spp. salivarius in mandarin juice. Probiotic survival and in vitro digestion. Journal of Food Engineering, 240, 43-48. doi:10.1016/j.jfoodeng.2018.07.012Bamba, B., Shi, J., Tranchant, C., Xue, S., Forney, C., Lim, L.-T., … Xu, G. (2018). Coencapsulation of Polyphenols and Anthocyanins from Blueberry Pomace by Double Emulsion Stabilized by Whey Proteins: Effect of Homogenization Parameters. Molecules, 23(10), 2525. doi:10.3390/molecules23102525Cilek Tatar, B., Sumnu, G., & Oztop, M. (2019). Microcapsule characterization of phenolic powder obtained from strawberry pomace. Journal of Food Processing and Preservation, 43(6), e13892. doi:10.1111/jfpp.13892Ester, B., Noelia, B., Laura, C.-J., Francesca, P., Cristina, B., Rosalba, L., & Marco, D. R. (2019). Probiotic survival and in vitro digestion of L. salivarius spp. salivarius encapsulated by high homogenization pressures and incorporated into a fruit matrix. LWT, 111, 883-888. doi:10.1016/j.lwt.2019.05.088Muramalla, T., & Aryana, K. J. (2011). Some low homogenization pressures improve certain probiotic characteristics of yogurt culture bacteria and Lactobacillus acidophilus LA-K. Journal of Dairy Science, 94(8), 3725-3738. doi:10.3168/jds.2010-3737Tabanelli, G., Burns, P., Patrignani, F., Gardini, F., Lanciotti, R., Reinheimer, J., & Vinderola, G. (2012). Effect of a non-lethal High Pressure Homogenization treatment on the in vivo response of probiotic lactobacilli. Food Microbiology, 32(2), 302-307. doi:10.1016/j.fm.2012.07.004Patrignani, F., Serrazanetti, D. I., Mathara, J. M., Siroli, L., Gardini, F., Holzapfel, W. H., & Lanciotti, R. (2015). Use of homogenisation pressure to improve quality and functionality of probiotic fermented milks containingLactobacillus rhamnosusBFE 5264. International Journal of Dairy Technology, 69(2), 262-271. doi:10.1111/1471-0307.12251Burns, P. G., Patrignani, F., Tabanelli, G., Vinderola, G. C., Siroli, L., Reinheimer, J. A., … Lanciotti, R. (2015). Potential of high pressure homogenisation on probiotic Caciotta cheese quality and functionality. Journal of Functional Foods, 13, 126-136. doi:10.1016/j.jff.2014.12.037Barrera, C., Burca, C., Betoret, E., García‐Hernández, J., Hernández, M., & Betoret, N. (2019). Improving antioxidant properties and probiotic effect of clementine juice inoculated with Lactobacillus salivarius spp. salivarius (CECT 4063) by trehalose addition and/or sublethal homogenisation. International Journal of Food Science & Technology, 54(6), 2109-2122. doi:10.1111/ijfs.14116Siroli, L., Braschi, G., Rossi, S., Gottardi, D., Patrignani, F., & Lanciotti, R. (2020). Lactobacillus paracasei A13 and High-Pressure Homogenization Stress Response. Microorganisms, 8(3), 439. doi:10.3390/microorganisms8030439LANCIOTTI, R., PATRIGNANI, F., IUCCI, L., SARACINO, P., & GUERZONI, M. (2007). Potential of high pressure homogenization in the control and enhancement of proteolytic and fermentative activities of some Lactobacillus species. Food Chemistry, 102(2), 542-550. doi:10.1016/j.foodchem.2006.06.04

    Aplicación de tecnologías sostenibles para el desarrollo de alimentos nutritivos y saludables dirigidos a mejorar el estado nutricional de la población del departamento del Chocó (Colombia)

    Full text link
    Tesis por compendio[ES] La importancia económica del fruto del lulo, su riqueza nutricional, accesibilidad y el elevado volumen de desperdicio asociado a la escasa industrialización, han provocado que este cultivo sea considerado por el gobierno colombiano como una de las cadenas productivas priorizadas para el desarrollo tecnológico y de innovación. Sobre este cultivo se plantea la siguiente tesis doctoral, que tiene como objetivo general: Desarrollar productos medianamente procesados a partir del fruto del lulo mediante la aplicación de tecnologías sostenibles y/o innovadoras que garanticen la estabilidad de sus compuestos bioactivos y que permitan incluir otros, como los probioticos, de una forma controlada. Los productos irán dirigidos a la población adulta con problemas de obesidad e hipertensión y a la población infantil con problemas de desnutrición del departamento del Chocó (Colombia). La consecución de este objetivo se aborda desde tres enfoques que configuran los tres capítulos en los que se ha estructurado el apartado de resultados: (i) conocer las principales deficiencias de la población infantil, de entre 2 y 5 años, en Quibdó, una de las zonas más desfavorecidas del departamento del Chocó; (ii) determinar la adecuación del fruto de lulo para el desarrollo de alimentos que ayuden a paliar las diferentes formas de malnutrición en la población infantil y adulta. Y establecer las posibilidades de aplicación de tecnologías que garanticen la estabilidad de sus compuestos bioactivos y que permitan incluir otros, como los probióticos; (iii) determinar las características del residuo que pueda generarse a partir del fruto del lulo y proponer un procedimiento que asegure el aprovechamiento integral del mismo. Los resultados del primer capítulo mostraron que, aunque las deficiencias en los principales macronutrientes en la población infantil no son alarmantes, sí que lo es el aporte de fibra y de micronutrientes como las vitaminas A y C y de minerales como el calcio. Esta situación está provocada, principalmente, por la ausencia total de la leche fresca y el escaso consumo de frutas y verduras. El lulo resultó ser, prácticamente, la única fruta que consumen. lo que confirma su elevada accesibilidad y aceptación. Los resultados experimentales del segundo capítulo mostraron el lulo como una fruta con propiedades fisicoquímicas y funcionales ventajosas para el desarrollo de productos alimenticios saludables a partir de recursos autóctonos de la región del Pacífico colombiano. Sus características estructurales permiten la incorporación de protectores, conservantes, compuestos fisiológicamente activos u otros aditivos. El perfil polifenólico obtenido por LC-MS, reveló la presencia de 288 compuestos pertenecientes a diferentes clases fenólicas. Además, el aumento de la presión del tratamiento de HPH incrementó la diversidad de polifenoles del zumo. El zumo de lulo también resultó ser una matriz adecuada para que Lactobacillus reuteri CECT 925 pueda llevar a cabo la fermentación dando lugar a un zumo con potenciales propiedades probióticas. Aunque los niveles de viabilidad fueron mayores en los zumos homogeneizados a 100 MPa y pH 5,5, en todas las muestras se logró una concentración mínima de 107 UFC/mL al final del ensayo, concentración suficiente para que el microorganismo pueda ejercer sus efectos beneficiosos para la salud en el tracto intestinal del huésped. En el último capítulo, se determinó la composición y las propiedades del bagazo resultante de obtener zumo de lulo y se valoraron diferentes procedimientos para realizar un aprovechamiento integral del mismo. Los resultados pusieron de manifiesto que el bagazo de lulo es una materia prima adecuada para obtener un polvo rico en fibra y carotenoides, que podría ser utilizado como ingrediente en la industria alimentaria y también a nivel doméstico. Se mostró un desequilibrio en la proporción entre fibra soluble e insoluble, lo que debería tenerse en cuenta en las aplicaciones posteriores y sobre todo si el producto se utiliza para alimentación infantil.[CA] La importància econòmica del fruit del lulo, la seua riquesa nutricional, accessibilitat i l'elevat volum de desaprofitament associat a l'escassa industrialització, han provocat que aquest cultiu siga considerat pel govern colombià com una de les cadenes productives prioritzades per al desenvolupament tecnològic i d'innovació. Sobre aquest cultiu es planteja la següent tesi doctoral, que té com a objectiu general: Desenvolupar productes mitjanament processats a partir del fruit del lulo mitjançant l'aplicació de tecnologies sostenibles i/o innovadores que garantisquen l'estabilitat dels seus compostos bioactius i que permeten incloure uns altres, com els probiotics, d'una forma controlada. Els productes aniran dirigits a la població adulta amb problemes d'obesitat i hipertensió i a la població infantil amb problemes de desnutrició del departament del Chocó (Colòmbia). La consecució d'aquest objectiu s'aborda des de tres enfocaments que configuren els tres capítols en els quals s'ha estructurat l'apartat de resultats: (i) Conéixer les principals deficiències de la població infantil, d'entre 2 i 5 anys, en Quibdó, una de les zones més desfavorides del departament del Chocó; (ii) determinar l'adequació del fruit de lulo per al desenvolupament d'aliments que ajuden a pal·liar les diferents formes de malnutrició en la població infantil i adulta. I establir les possibilitats d'aplicació de tecnologies que garantisquen l'estabilitat dels seus compostos bioactius i que permeten inclouren d'altres, com els probiòtics; (iii) determinar les característiques del residu que puga generar-se a partir del fruit del lulo i proposar un procediment que assegure l'aprofitament integral d'aquest. Els resultats del primer capítol mostraren que, encara que les deficiències en els principals macronutrients en la població infantil no són alarmants, sí que ho és l'aportació de fibra i de micronutrients com les vitamines A i C i de minerals com el calci. Aquesta situació está provocada, principalment, per l'absència total de la llet fresca en la dieta i l'escàs consum de fruites i verdures. El lulo resulta ser, pràcticament, l'única fruita que consumeixen. Els resultats experimentals del segon capítol mostraren el lulo com una fruita amb propietats fisicoquímiques i funcionales avantatjoses per al desenvolupament de productes alimentaris saludables a partir de recursos autòctons de la regió del Pacífic colombià. Les seues característiques estructurals permeten la incorporació de protectors, conservants i compostos actius o altres aditius. El perfil polifenòlic obtingut per LC-MS, mostrà la presencia de 288 compostos de diferents naturalesa polifenòlica. A més, l'augment de la presió del tractament de HPH incrementà la diversitat de polifenols del suc. El suc de lulo també va resultar ser una matriu adequada perquè Lactobacillus reuteri CECT 925 puga dur a terme la fermentació donant lloc a un suc amb potencials propietats probiòtiques. Encara que els nivells de viabilitat van ser majors en els sucs homogeneïtzats a 100 MPa i pH 5,5, en totes les mostres es va aconseguir una concentració mínima de 107 UFC/mL al final de la digestió gastrointestinal in vitro, concentració suficient perquè el microorganisme puga exercir els seus efectes beneficiosos per a la salut en el tracte intestinal de l'hoste. En l'últim capítol, es va determinar la composició i les propietats del bagàs resultant d'obtindre suc de lulo i es van valorar diferents procediments per a realitzar un aprofitament integral d'aquest. Els resultats van posar de manifest que el bagàs de lulo és una matèria primera adequada per a obtindre una pols rica en fibra i carotenoids, que podria ser utilitzat com a ingredient en la indústria alimentària i també a nivell domèstic. Es va mostrar un desequilibri en la proporció entre fibra soluble i insoluble, la qual cosa hauria de tindre's en compte en les aplicacions posteriors i sobretot si el producte s'utilitza per l’alimentació infantil.[EN] The economic importance of the lulo fruit, its nutritional richness, accessibility and the high volume of waste associated with low industrialization, have led the Colombian government to consider this crop as one of the priority production chains for technological development and innovation. The general objective of the following doctoral thesis is to develop moderately processed products from the lulo fruit through the application of sustainable and/or innovative technologies that guarantee the stability of its bioactive compounds and allow the inclusion of others, such as probiotics, in a controlled way. The final products will be aimed at the adult population with obesity and hypertension problems and the child population with malnutrition problems in the department of Chocó (Colombia). The achievement of this objective is approached from three focuses that make up the three chapters in which the results section is structured: (i) To know the main deficiencies of the child population, aged between 2 and 5 years, in Quibdó, one of the most disadvantaged areas of the department of Chocó; (ii) to determine the suitability of the lulo fruit for the development of foods that help to alleviate the different forms of malnutrition in the child and adult population. And to establish the possibilities of applying technologies that guarantee the stability of its bioactive compounds and allow the inclusion of others, such as probiotics; (iii) to determine the characteristics of the residue that can be generated from the lulo fruit and propose a procedure that ensures its integral use. The results of the first chapter showed that, although the deficiencies in the main macronutrients in the child population are not alarming, the deficiencies in fibre and micronutrients such as vitamins A and C and minerals such as calcium are alarming. This situation is mainly caused by the total absence of fresh milk in the diet and the low consumption of fruit and vegetables. Lulo was practically the only fruit consumed. In the second chapter, the experimental results obtained showed lulo as a fruit with advantageous physicochemical and functional properties for the development of healthy food products from indigenous resources of the Colombian Pacific region. Its structural characteristics allow the incorporation of protectants, preservatives, physiologically active compounds, or other additives. The polyphenolic profile obtained by LC-MS revealed the presence of 288 compounds belonging to different phenolic classes. In addition, increasing the pressure of the HPH treatment increased the polyphenol diversity of the juice. Lulo juice also proved to be a suitable matrix for Lactobacillus reuteri CECT 925 to carry out fermentation resulting in a juice with potential probiotic properties. Although viability levels were higher in the juices homogenized at 100 MPa and pH 5.5, a minimum concentration of 107 CFU/mL was achieved in all samples at the end of in vitro gastrointestinal digestion, which is sufficient for the microorganism to exert its beneficial health effects in the host's intestinal tract. In the last chapter, the composition and properties of the bagasse resulting from the production of lulo juice were determined and different procedures for its full utilization were evaluated. The results showed that lulo bagasse is a suitable raw material to obtain a powder rich in fibre and carotenoids, which could be used as an ingredient in the food industry and also at household level. An imbalance in the ratio between soluble and insoluble fibre was shown, which should be considered in subsequent applications and especially if the product is used for baby food.Al proyecto FORTALECIMIENTO DE ENCADENAMIENTOS PRODUCTIVOS DE LA SUBREGIÓN DEL CHOCÓ – Número BPIN: 2013000100284 financiado por el Fondo de Ciencia Tecnología e Innovación CTel. (MINCIENCIAS) del Sistema General de Regalías de Colombia, con recursos del departamento del Chocó y ejecutado por la Universidad Tecnológica del Chocó “Diego Luis Córdoba”.Hinestroza Còrdoba, LI. (2021). Aplicación de tecnologías sostenibles para el desarrollo de alimentos nutritivos y saludables dirigidos a mejorar el estado nutricional de la población del departamento del Chocó (Colombia) [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/180266TESISCompendi

    Effects of Processing and Storage Conditions on Functional Properties of Powdered Blueberry Pomace

    No full text
    Promoting a circular economy through valorisation of food processing waste into functional ingredients is a challenge today. The combination of hot air drying with milling is a cheap and highly available option for obtaining powdered products from blueberry pomace, a residue with a large amount of fibre and a high proportion of polyphenols from the fruit. The objective of this work was to analyse the effect of drying temperature (60 &deg;C and 70 &deg;C) and granulometry (coarse and fine) on physicochemical properties, including antioxidant properties and monomeric anthocyanins content. The potential prebiotic effect of blueberry pomace powders, as well as their water and oil interaction properties, were also assessed. Stability of physicochemical properties over 20 weeks of storage was also evaluated. Powders obtained showed a total fibre content higher than 30% with a good proportion between insoluble and soluble fractions and a high retention of monomeric anthocyanins from fresh pomace (75% at 60 &deg;C and 66% at 70 &deg;C). The powders showed good water interaction properties and interesting technological properties, such as solubility and hygroscopicity, which were not affected by differences in particle size. Stability of powders&rsquo; physicochemical properties was evidenced throughout the storage period

    Caracterización bromatológica de especies y subproductos vegetales en el trópico húmedo de Colombia

    Get PDF
    Se determinó el potencial nutritivo para especies pecuarias de recursos locales existentes en el municipio de Quibdó, departamento del Chocó (Colombia), teniendo en cuenta la composición bromatológica y digestibilidad in vitro de la materia seca (DIVMS) en hojas de árbol del pan (Arthocarpus altilis Z.), pacó (Gustavia superba Kunth.) y achín (Colocasia esculenta Linn), cáscaras del fruto de chontaduro (Bractris gasipaess Kunth.) y de plátano (Musa paradisiaca L.). El análisis bromatológico incluyó materia seca (MS), proteína bruta (PB), ceniza (Cen), fibra detergente ácida (FDA), fibra detergente neutra (FDN), lignina detergente ácida (LDA) y energía bruta (EB). Las hojas de achín y de árbol del pan presentaron los contenidos más altos de PB (27.78 y 19.38%) y de EB (3911 y 3981 cal/g, respectivamente). Los valores de DIVMS más altos se presentaron en cáscaras de chontaduro (78.9%) y hojas de achín (68.6%). En general, los recursos en estudio presentan valor nutritivo similar al de forrajes cultivados, por tanto, son una alternativa posible para la sustitución parcial de materias primas costosas en dietas para animales de granja.Nutritional Potential was determined for livestock species of local resources attending it’s chemical composition and digestibility proves in vitro of the dry matter (DIVDM) in leaves of Árbol del pan (Arthocarpus altilis Z.), Pacó (Gustavia superba Kunth) and Achín (Colocasia esculenta Linn), Chontaduro shells (Bactris gasipaes Kunth) and Banana shells (Musa paradisiaca L). Bromatological analyses included dry matter (DM), crude protein (CP), ash, acid detergent fiber (ADF), neutral detergent fiber (NDF), lignin fiber (ADL) and gross energy (EB). Higher raw protein percentages (CP) and gross energy (GE) for Achín leaves, and Árbol del pan leaves with 27.78, 19.38% and 3911 and 3981 cal/g, consecutively, whereas DIVDM values were better for Chontaduro shells and Achín leaves with 78.9 and 68.6%, respectively. In general, the resources at study show a nutritional value similar to the cultivated fodder, therefore, could be created a viable alternative to partial substitution to expensive source material in diets for farm animal

    Estudio etnobotánico de especias, plantas aromáticas y medicinales utilizadas en La Molana, Atrato-Chocó, Colombia: Bases para la conservación de la biodiversidad

    No full text
    Se realizó la caracterización y análisis de los sistemas productivos de plantas aromáticas, medicinales y condimentarias (PAMC) de La Molana, Atrato-Chocó, Colombia a través de la identificación de sus características biofísicas, socioeconómicas y financieras, con el fin de proponer alternativas agroecológicas que solucionen los problemas y necesidades identificados en dichos sistemas; aplicando las metodologías e indicadores de evaluación de sistemas agrícolas hacia el desarrollo sostenible, Diseño, implementación y evaluación de arreglos agroforestales, Sistemas Agroforestales acompañado del análisis DOFA, y planificación agroforestal de unidades productivas (PAF), dicha información fue recopilada a través de la aplicación de un taller focal y cuestionarios semiestructurados a 40 productores. Se caracterizaron ocho unidades productivas (UP), cuatro parcelas y cuatro azoteas, a través de un muestreo aleatorio simple sin reposición. Los resultados señalan que estos productores destinan 15.6 ha a la producción de PAMC, de las cuales 11 ha son de cultivos en parcelas dentro de bosques y 4.6 ha son destinadas a cultivos en azoteas alrededor de las viviendas. Las unidades producen en promedio, 110 unidades (manojos) semanales que son ofrecidos a vendedores informales en la plaza de mercado de Quibdó-Chocó, Colombia a precios que van desde COP 1000hastaCOP1000 hasta COP 3000 de acuerdo al tamaño y la especie. De igual modo se determinó que los ingresos económicos de las UP de PAMC dependen principalmente de las siguientes especies sembradas en las parcelas: Cilantro (Coriandrum sativum L.), cimarrón (Eryngium foetidum L.), Albahaca (Ocimum basilicum L.) y Orégano (Origanum vulgare L.), las cuales son las especies de mayor importancia económica en la zona de estudio

    An ethnobotanical survey of spice, aromatic and medicinal plants used in La Molana, Atrato-Choco, Colombia: Basis for biodiversity conservation

    Get PDF
    A characterization and analysis of the production systems of aromatic, medicinal and spice plants (AMSP) was carried out in La Molana, Atrato-Chocó, Colombia throughout the identification of their biophysical, socioeconomic and financial characteristics, in order to propose agroecological alternatives that solve the problems and identified needs in said systems; applying methodologies and evaluation indicators of agricultural systems addressed to sustainable rural development, design, implementation and evaluation of agroforestry arrangements, agroforestry systems accompanied by WOST analysis, and agroforestry planning of productive units (APPU), this information was collected through the application of a focal workshop and semi-structured questionnaires to 40 farm producers. Therefore, eight productive units (UP) with four plots and four rooftop, which was characterized throughout a simple random sampling without replacement. The results indicate that these farm producers destine 15.6 ha to AMSP production, from which 11 ha are crops structured in plots within forests and 4.6 ha are destined to crops in roofs around the houses. The units produce on average, 110 units (bunches) per week, which are offered to informal vendors in the market place of Quibdo-Choco, Colombia with prices which ranged from COP 1000toCOP 1000 to COP 3000 according to plant size and species. Likewise, was determined that the economic incomes of the AMSP units depend mainly on the following planted species: Cilantro (Coriandrum sativum L.), cimarron (Eryngium foetidum L.), Albahaca (Ocimum basilicum L.) and Oregano (Origanum vulgare L.), which are the most economically important species in the study area.Se realizó la caracterización y análisis de los sistemas productivos de plantas aromáticas, medicinales y condimentarias (PAMC) de La Molana, Atrato-Chocó, Colombia a través de la identificación de sus características biofísicas, socioeconómicas y financieras, con el fin de proponer alternativas agroecológicas que solucionen los problemas y necesidades identificados en dichos sistemas; aplicando las metodologías e indicadores de evaluación de sistemas agrícolas hacia el desarrollo sostenible, Diseño, implementación y evaluación de arreglos agroforestales, Sistemas Agroforestales acompañado del análisis DOFA, y planificación agroforestal de unidades productivas (PAF), dicha información fue recopilada a través de la aplicación de un taller focal y cuestionarios semiestructurados a 40 productores. Se caracterizaron ocho unidades productivas (UP), cuatro parcelas y cuatro azoteas, a través de un muestreo aleatorio simple sin reposición. Los resultados señalan que estos productores destinan 15.6 ha a la producción de PAMC, de las cuales 11 ha son de cultivos en parcelas dentro de bosques y 4.6 ha son destinadas a cultivos en azoteas alrededor de las viviendas. Las unidades producen en promedio, 110 unidades (manojos) semanales que son ofrecidos a vendedores informales en la plaza de mercado de Quibdó-Chocó, Colombia a precios que van desde COP 1000hastaCOP1000 hasta COP 3000 de acuerdo al tamaño y la especie. De igual modo se determinó que los ingresos económicos de las UP de PAMC dependen principalmente de las siguientes especies sembradas en las parcelas: Cilantro (Coriandrum sativum L.), cimarrón (Eryngium foetidum L.), Albahaca (Ocimum basilicum L.) y Orégano (Origanum vulgare L.), las cuales son las especies de mayor importancia económica en la zona de estudio
    corecore