181 research outputs found

    Preserving Family: Themes from a Qualitative Study of Kin Caregivers

    Get PDF
    This article presents themes from a qualitative study of 58 African American female kinship caregivers in San Francisco. Core concepts that emerged describe various paths along which children move into kin homes, and caregivers\u27 mixed emotional reactions to becoming surrogate parents. Women also discussed multiple family roles they assumed after taking in children. Responses highlight three primary reasons for becoming caregivers that center on providing for and protecting these children—particularly from the perceived threat of the public foster care system—and ultimately preserving the family unit. Paradoxically, caregivers\u27 reasons mirror the stated goals of the public foster care system, which they view as a threat to family stability. We discuss the problems of implementing practice and policy recommendations for permanency and family preservation and how to bridge the gap between the deeply held negative beliefs of African American caregivers towards the public system and begin to build trust

    SuperCDMS Cold Hardware Design

    Get PDF
    We discuss the current design of the cold hardware and cold electronics to be used in the upcoming SuperCDMS Soudan deployment. Engineering challenges associated with such concerns as thermal isolation, microphonics, radiopurity, and power dissipation are discussed, along with identifying the design changes necessary for SuperCDMS SNOLAB. The Cryogenic Dark Matter Search (CDMS) employs ultrapure 1-inch thick, 3-inch diameter germanium crystals operating below 50 mK in a dilution cryostat. These detectors give an ionization and phonon signal, which gives us rejection capabilities regarding background events versus dark matter signals.United States. Dept. of Energy (Grant DEAC02-76SF00515)United States. Dept. of Energy (Contract DC-AC02-07CH11359)National Science Foundation (U.S.) (Awards 0705052, 0902182, 1004714 and 0802575

    Benefits of robotic cystectomy with intracorporeal diversion for patients with low cardiorespiratory fitness: A prospective cohort study

    Get PDF
    BACKGROUND: Patients undergoing radical cystectomy have associated comorbidities resulting in reduced cardiorespiratory fitness. Preoperative cardiopulmonary exercise testing (CPET) measures including anaerobic threshold (AT) can predict major adverse events (MAE) and hospital length of stay (LOS) for patients undergoing open and robotic cystectomy with extracorporeal diversion. Our objective was to determine the relationship between CPET measures and outcome in patients undergoing robotic radical cystectomy and intracorporeal diversion (intracorporeal robotic assisted radical cystectomy [iRARC]). METHODS: A single institution prospective cohort study in patients undergoing iRARC for muscle invasive and high-grade bladder cancer. Inclusion: patients undergoing standardised CPET before iRARC. Exclusions: patients not consenting to data collection. Data on CPET measures (AT, ventilatory equivalent for carbon dioxide [VE/VCO2] at AT, peak oxygen uptake [VO2]), and patient demographics prospectively collected. Outcome measurements included hospital LOS; 30-day MAE and 90-day mortality data, which were prospectively recorded. Descriptive and regression analyses were used to assess whether CPET measures were associated with or predicted outcomes. RESULTS: From June 2011 to March 2015, 128 patients underwent radical cystectomy (open cystectomy, n = 17; iRARC, n = 111). A total of 82 patients who underwent iRARC and CPET and consented to participation were included. Median (interquartile range): age = 65 (58–73); body mass index = 27 (23–30); AT = 10.0 (9–11), Peak VO2 = 15.0 (13–18.5), VE/VCO2 (AT) = 33.0 (30–38). 30-day MAE = 14/111 (12.6%): death = 2, multiorgan failure = 2, abscess = 2, gastrointestinal = 2, renal = 6; 90-day mortality = 3/111 (2.7%). AT, peak VO2, and VE/VCO2 (at AT) were not significant predictors of 30-day MAE or LOS. The results are limited by the absence of control group undergoing open surgery. CONCLUSIONS: Poor cardiorespiratory fitness does not predict increased hospital LOS or MAEs in patients undergoing iRARC. Overall, MAE and LOS comparable with other series

    Absorbent articles, especially catamenials, having improved fluid directionality

    Get PDF
    The present invention provides absorbent articles, especially sanitary napkins, containing a fluid transport layer. In-use, the transport layer directs menses to a storage layer, thereby minimizing product failure and staining of undergarments. The transport layer can protrude into, or through, a topsheet to provide very aggressive transport of vaginal discharges. Preferably, the transport layer is a layer of fibers having external capillary channels

    Probing for Exoplanets Hiding in Dusty Debris Disks: Disk Imaging, Characterization, and Exploration with HST/STIS Multi-Roll Coronagraphy

    Get PDF
    Spatially resolved scattered-light images of circumstellar (CS) debris in exoplanetary systems constrain the physical properties and orbits of the dust particles in these systems. They also inform on co-orbiting (but unseen) planets, systemic architectures, and forces perturbing starlight-scattering CS material. Using HST/STIS optical coronagraphy, we have completed the observational phase of a program to study the spatial distribution of dust in ten CS debris systems, and one "mature" protoplanetrary disk all with HST pedigree, using PSF-subtracted multi-roll coronagraphy. These observations probe stellocentric distances > 5 AU for the nearest stars, and simultaneously resolve disk substructures well beyond, corresponding to the giant planet and Kuiper belt regions in our Solar System. They also disclose diffuse very low-surface brightness dust at larger stellocentric distances. We present new results inclusive of fainter disks such as HD92945 confirming, and better revealing, the existence of a narrow inner debris ring within a larger diffuse dust disk. Other disks with ring-like sub-structures, significant asymmetries and complex morphologies include: HD181327 with a posited spray of ejecta from a recent massive collision in an exo-Kuiper belt; HD61005 suggested interacting with the local ISM; HD15115 & HD32297, discussed also in the context of environmental interactions. These disks, and HD15745, suggest debris system evolution cannot be treated in isolation. For AU Mic's edge-on disk, out-of-plane surface brightness asymmetries at > 5 AU may implicate one or more planetary perturbers. Time resolved images of the MP Mus proto-planetary disk provide spatially resolved temporal variability in the disk illumination. These and other new images from our program enable direct inter-comparison of the architectures of these exoplanetary debris systems in the context of our own Solar System.Comment: 109 pages, 43 figures, accepted for publication in the Astronomical Journa

    Imaging Flash Lidar for Safe Landing on Solar System Bodies and Spacecraft Rendezvous and Docking

    Get PDF
    NASA has been pursuing flash lidar technology for autonomous, safe landing on solar system bodies and for automated rendezvous and docking. During the final stages of the landing from about 1 kilometer to 500 meters above the ground, the flash lidar can generate 3-Dimensional images of the terrain to identify hazardous features such as craters, rocks, and steep slopes. The onboard flight computer can then use the 3-D map of terrain to guide the vehicle to a safe location. As an automated rendezvous and docking sensor, the flash lidar can provide relative range, velocity, and bearing from an approaching spacecraft to another spacecraft or a space station. NASA Langley Research Center has developed and demonstrated a flash lidar sensor system capable of generating 16,000 pixels range images with 7 centimeters precision, at 20 Hertz frame rate, from a maximum slant range of 1800 m from the target area. This paper describes the lidar instrument and presents the results of recent flight tests onboard a rocket-propelled free-flyer vehicle (Morpheus) built by NASA Johnson Space Center. The flights were conducted at a simulated lunar terrain site, consisting of realistic hazard features and designated landing areas, built at NASA Kennedy Space Center specifically for this demonstration test. This paper also provides an overview of the plan for continued advancement of the flash lidar technology aimed at enhancing its performance to meet both landing and automated rendezvous and docking applications

    Accurate and Fast Simulation of Channel Noise in Conductance-Based Model Neurons by Diffusion Approximation

    Get PDF
    Stochastic channel gating is the major source of intrinsic neuronal noise whose functional consequences at the microcircuit- and network-levels have been only partly explored. A systematic study of this channel noise in large ensembles of biophysically detailed model neurons calls for the availability of fast numerical methods. In fact, exact techniques employ the microscopic simulation of the random opening and closing of individual ion channels, usually based on Markov models, whose computational loads are prohibitive for next generation massive computer models of the brain. In this work, we operatively define a procedure for translating any Markov model describing voltage- or ligand-gated membrane ion-conductances into an effective stochastic version, whose computer simulation is efficient, without compromising accuracy. Our approximation is based on an improved Langevin-like approach, which employs stochastic differential equations and no Montecarlo methods. As opposed to an earlier proposal recently debated in the literature, our approximation reproduces accurately the statistical properties of the exact microscopic simulations, under a variety of conditions, from spontaneous to evoked response features. In addition, our method is not restricted to the Hodgkin-Huxley sodium and potassium currents and is general for a variety of voltage- and ligand-gated ion currents. As a by-product, the analysis of the properties emerging in exact Markov schemes by standard probability calculus enables us for the first time to analytically identify the sources of inaccuracy of the previous proposal, while providing solid ground for its modification and improvement we present here

    The what and where of adding channel noise to the Hodgkin-Huxley equations

    Get PDF
    One of the most celebrated successes in computational biology is the Hodgkin-Huxley framework for modeling electrically active cells. This framework, expressed through a set of differential equations, synthesizes the impact of ionic currents on a cell's voltage -- and the highly nonlinear impact of that voltage back on the currents themselves -- into the rapid push and pull of the action potential. Latter studies confirmed that these cellular dynamics are orchestrated by individual ion channels, whose conformational changes regulate the conductance of each ionic current. Thus, kinetic equations familiar from physical chemistry are the natural setting for describing conductances; for small-to-moderate numbers of channels, these will predict fluctuations in conductances and stochasticity in the resulting action potentials. At first glance, the kinetic equations provide a far more complex (and higher-dimensional) description than the original Hodgkin-Huxley equations. This has prompted more than a decade of efforts to capture channel fluctuations with noise terms added to the Hodgkin-Huxley equations. Many of these approaches, while intuitively appealing, produce quantitative errors when compared to kinetic equations; others, as only very recently demonstrated, are both accurate and relatively simple. We review what works, what doesn't, and why, seeking to build a bridge to well-established results for the deterministic Hodgkin-Huxley equations. As such, we hope that this review will speed emerging studies of how channel noise modulates electrophysiological dynamics and function. We supply user-friendly Matlab simulation code of these stochastic versions of the Hodgkin-Huxley equations on the ModelDB website (accession number 138950) and http://www.amath.washington.edu/~etsb/tutorials.html.Comment: 14 pages, 3 figures, review articl

    Mathematical modelling and numerical simulation of the morphological development of neurons

    Get PDF
    BACKGROUND: The morphological development of neurons is a very complex process involving both genetic and environmental components. Mathematical modelling and numerical simulation are valuable tools in helping us unravel particular aspects of how individual neurons grow their characteristic morphologies and eventually form appropriate networks with each other. METHODS: A variety of mathematical models that consider (1) neurite initiation (2) neurite elongation (3) axon pathfinding, and (4) neurite branching and dendritic shape formation are reviewed. The different mathematical techniques employed are also described. RESULTS: Some comparison of modelling results with experimental data is made. A critique of different modelling techniques is given, leading to a proposal for a unified modelling environment for models of neuronal development. CONCLUSION: A unified mathematical and numerical simulation framework should lead to an expansion of work on models of neuronal development, as has occurred with compartmental models of neuronal electrical activity
    • …
    corecore