1,446 research outputs found

    Wood Duck Investigations W-118-R-4-5-6 Final Report

    Get PDF
    W-118-R-4-5-6 (Final Report); issued November 20, 1998; Study I: Aerial helicopter surveys of breeding wood ducks in bottomland forest.Report issued on: November 20, 1998INHS Technical Report prepared for Illinois Department of Natural Resource

    Aerial Inventories of Waterfowl in Illinois and Estimation of Moist-soil Plant Seed Abundance for Waterfowl on Lands Managed by Illinois Department of Natural Resources

    Get PDF
    Grant/Contract No: W-43-R 53-54-55Reports on progress and results of inventories of waterfowl along the Illinois and central Mississippi rivers during fall and winter and estimation of moist-soil plant seed abundance for waterfowl on lands managed by Illinois Department of Natural ResourcesINHS Technical Report Prepared for U.S. Fish & Wildlife Service, Illinois Department of Natural Resource

    Waterbird and Wetland Monitoring at The Emiquon Preserve Annual Report 2017

    Get PDF
    The Nature Conservancy (TNC) identified key ecological attributes (hereafter, KEAs) of specific biological characteristics or ecological processes that evaluate restoration success and trajectory at The Emiquon Preserve (hereafter Emiquon; The Nature Conservancy 2006). Because of the historic importance of the Illinois River valley (IRV) to waterfowl and other waterbirds, several conservation targets and associated KEAs at Emiquon were related to waterbird communities and their habitats (Appendix A). Indeed, use of wetlands by waterbirds may serve as an indicator of landscape condition or a measure of restoration success (Austin et al. 2001, Gawlik 2006, Hagy et al. 2017). Therefore, we monitored the response of wetland vegetation and waterbirds to restoration efforts at Emiquon during 2017 to evaluate restoration success relative to desired conditions under the relevant KEAs. Our primary efforts included evaluating: 1) abundance and diversity of waterfowl and other waterbirds through spring and autumn aerial counts; 2) productivity by waterfowl and other waterbirds through brood counts and nest searches; 3) plant seed biomass to estimate energetic carrying capacity for waterfowl during autumn migration; 4) biomass of wetland plants and seeds emigrating from Emiquon through the water control structure; and 5) composition and arrangement of wetland vegetation communities and associated cover types through geospatial covermapping and soil properties in response to water management. Herein, we report results of our monitoring efforts and interpret them as a means of evaluating restoration activities at Emiquon with respect to desired conditions under the KEAs.The Nature Conservancy Contract Number: C07-032unpublishednot peer reviewedOpe

    Waterbird and wetland monitoring at The Emiquon Preserve: Final report, 2007-2018

    Get PDF
    Historically, the wetlands of the Illinois River valley (IRV) provided extensive and valuable habitat to migrating waterbirds and other wetland-dependent wildlife in the Upper Midwest (Havera 1999). The Nature Conservancy’s Emiquon Preserve (2,700 ha) is a portion of a former floodplain of the Illinois River that was farmed for >80 years, isolated behind river levees, and has been undergoing restoration to a complex of wetlands and uplands since 2007. Since hydrology returned in 2007, we have monitored key ecological attributes (hereafter, KEAs) of specific biological characteristics or ecological processes related to waterbird communities and their habitats. Wetland vegetation communities and associated cover types have increased almost 700% since 2007, expanding from 255 ha to 2022 ha in fall 2016. Aquatic bed vegetation has comprised >50% of Emiquon Preserve since 2009, but important emergent plant communities have declined in recent years as the complex reached the lake marsh stage due to elevated and stabilized water levels (van der Valk and Davis 1978). Waterfowl and other waterbirds visit Emiquon Preserve in great numbers each fall and spring migration, with species such as American coot, northern pintail, green-winged teal, and gadwall selecting Emiquon compared to other wetlands and lakes in the IRV. The abundant aquatic bed and hemi-marsh plant communities collectively provide more food for waterbirds than do other nearby wetlands, such as the south pool of Chautauqua National Wildlife Refuge. Consistent with the >30 million energetic use days provided annually during 2013–2015 at Emiquon Preserve, dabbling and diving duck behaviors were dominated by feeding indicating the importance of the aquatic plant communities as foraging habitat. Emiquon also provides breeding habitat for species of conservation concern, such as common gallinule, black-crowned night herons, least bitterns, and American bitterns, as well as several species of ducks, geese, and swans. However, 3 we have noted recent declines in persistent emergent vegetation, moist-soil vegetation, brood counts which act as an index of waterbird productivity, duck use days during fall migration, and invertebrate abundance during brood-rearing periods, which we assume is related to the transition of Emiquon Preserve into the lake marsh stage. Consequently, Emiquon Preserve is currently undergoing an extensive drawdown to reverse declining trends in wetland health and corresponding waterbird use. Future monitoring will assess the effects of drawdown on emergent vegetation communities and the response of wildlife in the system.The Nature Conservancyunpublishednot peer reviewedOpe

    Electrostatic considerations affecting the calculated HOMO-LUMO gap in protein molecules.

    Get PDF
    A detailed study of energy differences between the highest occupied and lowest unoccupied molecular orbitals (HOMO-LUMO gaps) in protein systems and water clusters is presented. Recent work questioning the applicability of Kohn-Sham density-functional theory to proteins and large water clusters (E. Rudberg, J. Phys.: Condens. Mat. 2012, 24, 072202) has demonstrated vanishing HOMO-LUMO gaps for these systems, which is generally attributed to the treatment of exchange in the functional used. The present work shows that the vanishing gap is, in fact, an electrostatic artefact of the method used to prepare the system. Practical solutions for ensuring the gap is maintained when the system size is increased are demonstrated. This work has important implications for the use of large-scale density-functional theory in biomolecular systems, particularly in the simulation of photoemission, optical absorption and electronic transport, all of which depend critically on differences between energies of molecular orbitals.Comment: 13 pages, 4 figure

    Waterbird and Wetland Monitoring at The Emiquon Preserve Annual Report 2016

    Get PDF
    The Nature Conservancy (TNC) identified key ecological attributes (hereafter, KEAs) of specific biological characteristics or ecological processes that could indicate restoration success and trajectory at the Emiquon Preserve (hereafter Emiquon; The Nature Conservancy 2006). Because of the historic importance of the Illinois River valley to waterfowl and other waterbirds, several conservation targets and associated KEAs at Emiquon were related to waterbird communities and their habitats (Appendix A). Inde ed, use of wetlands by waterbirds may serve as an indicator of landscape condition or a measure of restoration success (Austin et al. 2001, Gawlik 2006). Therefore, we monitored the response of wetland vegetation and waterbirds to restoration efforts at Emiquon during 2016 to evaluate restoration success relative to desired conditions under the relevant KEAs. Our primary efforts included evaluating: 1) abundance, diversity, and behavior of waterfowl and other waterbirds through autumn aerial counts and spring ground counts; 2) productivity by waterfowl and other waterbirds through brood counts and nest searches; 3) plant seed biomass to estimate energetic carrying capacity for waterfowl during autumn migration; 4) biomass of wetland plants and seeds emigrating from Emiquon through the water control structure; and 5) composition and arrangement of wetland vegetation communities and associated cover types through geospatial covermapping and soil properties in response to water management. Herein, we report results of our monitoring efforts and interpret them as a means of evaluating restoration activities at Emiquon with respect to desired conditions under the KEAs.The Nature Conservancy Contract Number: C07-032unpublishednot peer reviewedOpe

    Waterbird and wetland monitoring at the Emiquon Preserve: Annual Report 2014

    Get PDF
    The Nature Conservancy (TNC) identified key ecological attributes (hereafter, KEAs) of specific biological characteristics or ecological processes that could indicate restoration success and trajectory at the Emiquon Preserve (hereafter Emiquon; The Nature Conservancy 2006). Because of the historic importance of the Illinois River valley to waterfowl and other waterbirds, several conservation targets and associated KEAs at Emiquon were related to waterbird communities and their habitats(Appendix A). Indeed, use of wetlands by waterbirds may serve as an indicator of landscape condition or a measure of restoration success (Austin et al. 2001,Gawlik 2006). Therefore, we monitored the response of wetland vegetation and waterbirds to restoration efforts at Emiquon during 2014to evaluate restoration success relative to desired conditions under the relevant KEAs. Our primary efforts included evaluating: 1) abundance, diversity, and behavior of waterfowl and other waterbirds through autumn aerial counts and spring ground counts; 2) productivity by waterfowl and other waterbirds through brood counts; 3) plant seed and invertebrate biomass to estimate energetic carrying capacity for waterfowl during migration and breeding periods;and 4) composition and arrangement of wetland vegetation communities and associated cover types through geospatial cover mapping.Herein, we report results of our monitoring efforts and interpret them as a means of evaluating restoration activities at Emiquon with respect to desired conditions under the KEAs.The Nature Conservancyunpublishednot peer reviewe

    Linear-scaling density-functional simulations of charged point defects in Al2O3 using hierarchical sparse matrix algebra

    Get PDF
    We present calculations of formation energies of defects in an ionic solid (Al(2)O(3)) extrapolated to the dilute limit, corresponding to a simulation cell of infinite size. The large-scale calculations required for this extrapolation are enabled by developments in the approach to parallel sparse matrix algebra operations, which are central to linear-scaling density-functional theory calculations. The computational cost of manipulating sparse matrices, whose sizes are determined by the large number of basis functions present, is greatly improved with this new approach. We present details of the sparse algebra scheme implemented in the ONETEP code using hierarchical sparsity patterns, and demonstrate its use in calculations on a wide range of systems, involving thousands of atoms on hundreds to thousands of parallel processes
    • …
    corecore