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Linear-S
aling Density-Fun
tional Simulations of Charged Point Defe
ts in Al2O3using Hierar
hi
al Sparse Matrix AlgebraN. D. M. Hine,1,2 P. D. Haynes,1 A. A. Mosto�1 and M. C. Payne2
1Department of Physi
s and Department of Materials,Imperial College London, Exhibition Road, London SW7 2AZ, UK. and

2Theory of Condensed Matter group, Cavendish Laboratory,J. J. Thomson Avenue, Cambridge CB3 0HE, UK.(Dated: July 20, 2010)We present 
al
ulations of formation energies of defe
ts in an ioni
 solid (Al2O3) extrapolatedto the dilute limit, 
orresponding to a simulation 
ell of in�nite size. The large-s
ale 
al
ulationsrequired for this extrapolation are enabled by developments in the approa
h to parallel sparse matrixalgebra operations, whi
h are 
entral to linear-s
aling density-fun
tional theory 
al
ulations. The
omputational 
ost of manipulating sparse matri
es, whose sizes are determined by the large numberof basis fun
tions present, is greatly improved with this new approa
h. We present details of thesparse algebra s
heme implemented in the ONETEP 
ode using hierar
hi
al sparsity patterns, anddemonstrate its use in 
al
ulations on a wide range of systems, involving thousands of atoms onhundreds to thousands of parallel pro
esses.I. INTRODUCTIONIt is well established that a

urate 
al
ulations of the properties of point defe
ts in 
rystalline materials requirethe use of very large simulation 
ells, 
ontaining large numbers of atoms [1℄. In parti
ular, the formation energies of
harged point defe
ts are strongly a�e
ted by �nite-size errors up to very large systems, due to the very slow de
ayof the elasti
 and ele
trostati
 �elds resulting from the lo
alised perturbation. Crystalline alumina (Al2O3) is anexample of a system where the high ioni
 
harges (formally Al3+ and O2−) mean that the predominant defe
ts are
harged (V 2+
O and V 3−

Al ) and thus 
hallenging to simulate a

urately [2℄.For these types of 
al
ulation, density-fun
tional theory (DFT) [3℄ is well established as a mainstay of 
omputationalmethods. However, traditional approa
hes to DFT en
ounter a 
ubi
 s
aling `wall' with in
reasing system size, sin
ethe total 
omputational e�ort of a 
al
ulation involving N atoms in
reases as O(N3). Furthermore, this e�ort is non-trivial to parallelize to large numbers of 
ores, rendering 
al
ulations of mu
h beyond 1000 atoms rather impra
ti
al.Alternative approa
hes, known as linear-s
aling DFT (LS-DFT) [4, 5℄, reformulate traditional DFT to avoid the
omputation of orthonormal eigenstates of the Hamiltonian, sin
e manipulation of these is inherently 
ubi
-s
alingwith system size.LS-DFT has been the fo
us of 
onsiderable development e�ort, with several mature 
odes now available [6�12℄.Rather than working with extended eigenstates, linear-s
aling approa
hes work in a basis of lo
alized fun
tions, whi
hare in general nonorthogonal. Ea
h of these fun
tions has signi�
ant overlap only with a small number of otherfun
tions on nearby atoms, and this number remains 
onstant with in
reasing system size N in the limit of large N .This means that a matrix representing a lo
al operator expressed in this lo
alized basis 
ontains a total number ofnonzero elements whi
h s
ales only as O(N), rather than O(N2). The whole matrix 
an then be 
al
ulated in O(N)
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omputational e�ort if ea
h individual element 
an be 
al
ulated with e�ort independent of system size. Furthermore,in an insulator, the single-ele
tron density matrix is itself exponentially lo
alized: expressed in a separable form interms of this lo
alized basis, the density matrix 
an be trun
ated to O(N) nonzero elements. Finally, multipli
ationof sparse matri
es whose 
olumns ea
h 
ontain only O(1) elements is possible in O(N) e�ort. It is these three 
ru
ialpoints whi
h enable an overall linear-s
aling approa
h to total energy 
al
ulations within DFT in insulating systems.The e�
ien
y and feasibility of linear-s
aling methods depends 
ru
ially on the methods used for manipulation ofsparse matri
es. Performan
e depends not only on the prefa
tor relating total 
omputational time to system size,but also on the degree of parallelizability of the method. The 
omputing power available in a single parallel pro
ess(one 
ore of one pro
essor in a parallel 
omputer) has not in
reased signi�
antly in re
ent years, so if feasible systemsizes are to in
rease, the s
aling of algorithms with number of parallel pro
esses P is just as important as s
aling with
N . Put another way, as N grows, algorithms for linear-s
aling DFT must remain able to perform simulations withinfeasible wall-
lo
k time by allowing P to in
rease. To ensure this, if N and P are in
reased proportionally, total timemust remain roughly 
onstant. This not simply a 
omputer s
ien
e issue, but requires parallel algorithms designedaround the physi
s of the problem and the systems being studied.In this paper, we des
ribe and apply a novel approa
h to matrix algebra, optimised for linear-s
aling ele
troni
stru
ture 
al
ulations. In this `hybrid' s
heme, designed for speed and parallel e�
ien
y, we mix elements of bothsparse and dense matrix algebra. We divide up matri
es a

ording to the parallel pro
ess on whi
h the data asso
iatedwith a given atom is lo
ated, then de�ne segments of the matrix to be stored (and 
ommuni
ated) in sparse indexedor dense format a

ording to the density of nonzero elements. It be
omes possible to determine for a given operationa �xed subset of parallel pro
esses with whi
h ea
h pro
ess will require 
ommuni
ation, and how best to transmit the
ommuni
ated data, on the basis of the physi
al distribution of the atoms within the simulation 
ell. At a 
onstantratio of atoms per 
ore N/P , the number of other 
ores with whi
h 
ommuni
ation is required is shown to remain
onstant. Therefore, for larger and larger equivalent 
al
ulations on more and more parallel 
ores, total time doesnot signi�
antly in
rease, resulting in a 
onstant `time-to-s
ien
e' for any system size, given adequate 
omputationalhardware.This paper dis
usses the appli
ation of these te
hniques within the ONETEP approa
h [12℄. This approa
h des
ribedis ideally suited to appli
ation to LS-DFT a
ross a wide range of systems, and indeed linear-s
aling ele
troni
 stru
turegenerally. Its implementation in ONETEP (Se
tion II) has led to signi�
ant performan
e improvements whi
h wedes
ribe in Se
tion III. In Se
tion IV we present an appli
ation of the improved methods to the 
al
ulation of theformation energies of 
harged defe
ts in α-Al2O3 (
orundum). Extrapolating to the limit of in�nite dilution theformation energies of the defe
ts, whi
h vary with the size of the simulation 
ell due to �nite size e�e
ts, we are ableto systemati
ally identify and eliminate the �nite size errors present and analyze their e�e
ts.II. SPARSE MATRIX ALGEBRA FOR ELECTRONIC STRUCTUREA. Sparse Matri
es in Ele
troni
 Stru
tureONETEP is a linear-s
aling DFT 
ode for total energy and for
e 
al
ulations on systems of hundreds to hundredsof thousands of atoms [13℄. It uses a set of optimizable lo
alized fun
tions, referred to as Nonorthogonal Generalized



3Wannier Fun
tions (NGWFs) [14, 15℄, expressed in terms of periodi
 sin
 fun
tions (psin
s), to represent the densitymatrix. The basis of psin
 fun
tions has very similar favorable properties to the plane wave basis frequently usedin traditional DFT. ONETEP therefore 
ombines the bene�ts of linear-s
aling with system size with the variationalbounds and systemati
 
onvergen
e with respe
t to basis size provided by a plane-wave basis. Re
ent developmentwork [13℄ on the ONETEP 
ode resulted in 
onsiderable speedup to the performan
e of LS-DFT simulations. However,it was also demonstrated that sparse algebra operations remained the limiting fa
tor on parallel e�
ien
y when s
alingto large numbers of pro
esses, and that s
aling of the 
al
ulation wall-
lo
k time as O(N/P ) was not obtained beyondaround P ∼ 100.The matrix algebra required for ele
troni
 stru
ture 
al
ulations using nonorthogonal lo
alized orbitals mostlyinvolves 
ombinations of three basi
 matri
es: the overlap matrix Sαβ = 〈φα|φβ〉 between pairs of orbitals φα(r) and
φβ(r), the Kohn-Sham Hamiltonian Hαβ = 〈φα|Ĥ|φβ〉 in the basis of these fun
tions, and the density kernel Kαβ ,whi
h expresses the single-parti
le density matrix:

ρ(r, r′) = φα(r)Kαβ φβ(r′) . (1)We are using the 
onvention of summation over repeated Greek indi
es, and using subs
ripts to denote 
ovariantindi
es and supers
ripts to denote 
ontravariant ones. The generalization of these and all the following expressions tospin dependent forms is straightforward, so spin-labels will be omitted.The NGWFs {φα(r)} are stri
tly lo
alized with a 
uto� radius Rφ (typi
ally around 3�4 Å) so Sαβ is only nonzeroif φα and φβ overlap. Hαβ is nonzero either if φα and φβ overlap dire
tly or if they both overlap a 
ommon nonlo
alproje
tor. Kαβ , meanwhile, is de�ned to be nonzero only for elements α, β on atoms at Rα, Rβ for whi
h |Rα−Rβ | <

RK , where the kernel 
uto� RK is typi
ally 
hosen to be of order 10�25 Åin an insulator. All quantities are thereforeexpressed in terms of matri
es 
ontaining only O(N) nonzero elements in the limit of large N , and for whi
h thematrix stru
ture is known a priori. Note that this is in 
ontrast to linear-s
aling methods whi
h apply a thresholdingapproa
h to sparsity patterns by dis
arding matrix elements whose magnitude is below some threshold, in whi
h 
asethe matrix stru
ture may 
hange dynami
ally as the 
al
ulation progresses.Minimisation of the total energy in the above formalism 
orresponds to minimising
E[{Kαβ}, {φα}] = KαβHβα + EDC[n] , (2)with respe
t to the kernel Kαβ and the set of fun
tions {φα} simultaneously. EDC[n] is a double-
ounting termwritten in terms of the ele
tron density n(r) = ρ(r, r), whi
h subtra
ts o� density-density intera
tions a

ounted fortwi
e in the Tr[KH] term. The total energy E is variational with respe
t to ea
h of the plane-wave 
uto� Ecut of thegrid on whi
h φα(r) is evaluated, the NGWF radii {Rφ} and the kernel 
uto� RK . Details of the methods used tooptimise the kernel [16℄ and the NGWFs [17℄ 
an be found elsewhere. The important point is that all aspe
ts of theminimisation pro
ess require extensive use of sparse matrix algebra � in parti
ular evaluation of the produ
t of pairsof sparse matri
es.For the optimisation of the density matrix, manipulation of matri
es of 
onsiderably lower sparsity than the densitykernel itself is required, so as not to dis
ard 
ontributions to the kernel gradient during 
onjugate gradients optimiza-tion. There is therefore a need for a sparse algebra system 
apable of high performan
e and ex
ellent s
aling a
ross arange spanning from highly sparse matri
es (su
h as 0.01% nonzero elements) to fully dense matri
es (100% nonzero



4elements), within the same framework. The usual approa
h to sparse matrix algebra problems is to store only thenonzero elements of the matrix: either determined by the geometry of the problem, or indexed element by element,in an index stored separately from the data itself. However, in large systems there are very large numbers of nonzeroelements, and the 
omputational overhead of indexing them 
an be enormous.For this reason, it is a

epted that for a given matrix algebra operation there will exist a threshold of element densityabove whi
h dense matrix algebra is more e�
ient than sparse algebra. This is often around 10% or less for a matrixprodu
t, though pre
ise details depend on the spe
i�
 software and hardware implementation. Previous versions ofONETEP (and to our knowledge, most other linear-s
aling ele
troni
 stru
ture 
odes) have supported only either allsparse-indexed matri
es or all dense matri
es within one 
al
ulation. However, neither of these extremes is able toobtain good performan
e and s
aling for typi
al realisti
 systems. We thus des
ribe a `hybrid' hierar
hi
al systemable to handle the 
ases of both highly sparse and fully dense matri
es e�
iently within the same framework, buildingdistribution of the matrix over the pro
esses of a parallel 
omputer into the framework in a natural way. Hierar
hi
alapproa
hes to sparse matrix algebra, su
h as 
ombining atom blo
ks into larger groups, have been des
ribed previously[18�21℄. However, this has generally been applied to ele
troni
 stru
ture methods applying thresholding to determinesparsity patterns. Here we will dis
uss the spe
i�
s of appli
ation to the 
ase of �xed matrix sparsity, in parti
ularthe extra bene�ts that 
an be obtained in terms of redu
ing the volume of parallel 
ommuni
ation between pro
esses.B. Parallel Distribution of Sparse Matrix AlgebraThe �rst step is to distribute the atoms over the parallel pro
esses in su
h a way that ea
h pro
ess only has atomswhose fun
tions overlap those of as small as possible a number of other pro
esses. This is a
hieved by ordering theatoms a

ording to a spa
e-�lling 
urve (SFC) [21℄. Atoms are assigned a Gray 
ode formed by interleaving the binarydigits of their position expressed in terms of a 
oarsened grid along ea
h of the three axes. Use of a separate grid forea
h axis ensures that in simulation 
ells with high aspe
t ratio, the absolute distan
es along the three axes are givenequal weight. The atoms are then sorted a

ording to their Gray 
ode and distributed to pro
esses in su
h a wayas to balan
e the number of NGWFs per atom evenly. This ensures ea
h pro
ess holds a spatially-lo
alized group ofatoms, with adjoining spatially-lo
alized groups on `nearby' pro
esses numeri
ally.The distribution of matrix data over pro
esses then follows the distribution of atoms: 
olumns 
orresponding tofun
tions on a given atom are held by the pro
ess to whi
h that atom belongs. For reasons of e�
ient parallelization,these pro
ess-
olumns are further divided into `segments', 
orresponding to row-fun
tions asso
iated with a givenpro
ess. The result is a grid of P × P segments ea
h of size Mj × Ni where Ni is the number of 
olumn elements onpro
ess i and Mj is the number of row elements on pro
ess j.For a set of atom-
entered fun
tions, su
h as NGWFs or nonlo
al pseudopotential proje
tors, if any fun
tion on agiven atom I overlaps a fun
tion on a di�erent atom J , then all the fun
tions on both atoms overlap, giving rise toa blo
k of mJ × nI matrix elements whi
h are all nonzero, where nI is the number of (
olumn-) fun
tions on atom Iand mJ is the number of (row-) fun
tions on atom J . Therefore, rather than indexing individual nonzero elements, alarge saving in both memory and CPU time is obtained by indexing nonzero atom-blo
ks. This form of sparse blo
kedmatrix is 
ommon to many linear-s
aling ele
troni
 stru
ture implementations [21�23℄. Note that the number of rowelements may di�er from the number of 
olumn elements for a given atom, to allow treatment of non-square matri
es
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Ni

Mj

j(rowsegment)
i (
olumn segment)
nI

mJ

J(rowblo
k)
I (
olumn blo
k)

Figure 1: Parallel distribution of a sparse matrix, �rst into 
olumn-segments (distributed over pro
esses) then into row-segmentswithin ea
h 
olumn, a

ording to the same pattern. Ea
h segment is either blank, sparse-indexed by atom-blo
ks, or fully dense.In the example shown, a matrix with 20 atoms is divided 
olumn-wise over four pro
esses, with four row-segments per pro
essea
h 
ontaining 5 × 5 atom blo
ks, ea
h of whi
h may or may not be present in the sparse index. One individual segment jon pro
ess i of size Mj × Ni is highlighted, as is one blo
k of size mJ × nI within this segment, asso
iated with the overlap ofatoms I and J .su
h as the overlap matrix between NGWFs and proje
tors.The typi
al 
uto�s required, espe
ially when dealing with the density kernel in systems with a small energy gap,are quite large on the s
ale of typi
al interatomi
 distan
es. Therefore, ea
h atom may be asso
iated with nonzeroelements in blo
ks asso
iated with a large number of other atoms. As seen in Figure 2, the SFC ordering ensuresthat the majority of these nonzero elements will belong to either the same pro
ess or one of a small number of nearbypro
esses. Therefore, a typi
al matrix will 
ontain a broad band of nonzero elements 
entered around the diagonalbut extending some way o� it. Figure 2 shows examples of the segment �lling fra
tions for the produ
t (KS)α
β ofthe density kernel and the overlap matrix for various typi
al systems. Be
ause of this banding of nonzero elementsnear the diagonal, it is often the 
ase that for a given segment near the diagonal, most or in many 
ases all of theelements in su
h a segment are nonzero, espe
ially in the matri
es representing produ
ts su
h as KS, KSK and

KSKS. Similarly, many of the segments far from the diagonal will 
ontain few nonzero elements or none at all.We therefore add a se
ond level of indexing of the sparsity pattern, 
orresponding to the aforementioned segments ofthe matrix. A 
ount is made of the number of nonzero elements within ea
h segment. This is then used to determinewhether ea
h segment either a) 
ontains a fra
tion of nonzero elements greater than or equal to some threshold η,where 0 ≤ η ≤ 1, and is thus de
lared `dense' and stored in full (in
luding zero elements); b) 
ontains a fra
tionof nonzero elements less than η and is thus `sparse', and the blo
k-indexing is retained; or 
) 
ontains no nonzeroelements and is thus `blank'. This segmentation has numerous advantages in terms of redu
ing both the 
omputationand 
ommuni
ations requirements of matrix algebra, parti
ularly matrix multipli
ation.Consider the matrix produ
t operation Cα
β = AαγBγβ . Ea
h segment 
an be thought of as a sub-matrix (in generalthese are not square). Denoting by Xki the row-segment k of the matrix X in 
olumn-segment i (thus, stored onpro
ess i), we 
an write the segments of the produ
t matrix as

Cki =
∑

j

Akj · Bji .The individual 
ontributions j to Cki 
an be evaluated in several di�erent ways a

ording to the density η in the
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Figure 2: Segment-by-segment �lling fa
tors of sparse matri
es in typi
al large systems divided over P=64 pro
esses. Matri
esof the sparsity pattern (KS)α
β (the produ
t of the density kernel and overlap matri
es) are shown for: (a) a (10,0) zigzagnanotube (4000 atoms), (b) a 64-base pair sequen
e of B-DNA (4182 atoms), (
) an H-terminated wurtzite-stru
ture GaAsnanorod (4296 atoms) (d) 8 × 8 × 8 super
ell of 8-atom 
ubi
 unit 
ells of 
rystalline Si (4096 atoms). Ea
h pixel representsa segment, whose 
olor shows the fra
tion of matrix elements in that segment whi
h are nonzero: bla
k segments 
ontain nononzero elements, through red then yellow to white segments 
ontaining all nonzero elements. The nonzero elements are seento be 
lustered near the diagonal of the matrix (though less so with in
reasing periodi
ity and 
omplexity of the stru
ture).The spa
e-�lling 
urve ensures that in a given 
olumn there are nonzero overlaps only with rows of atoms on `nearby' pro
esses,so the nonzero elements form a broad band 
entered on the diagonal. This is 
learest for the simple stru
ture of the nanotube,but even for the 
rystalline solid there are large numbers of segments in whi
h there are no nonzero elements.



7various segments involved. Note that if either of Akj or Bji is blank then no 
al
ulation is required for that indexvalue j, while if Cki is blank, no 
al
ulation is required at all.At the other extreme, if Akj , Bji and Cki are all `dense' segments, then the multipli
ation operation 
an beperformed very e�
iently by through a dense linear algebra library 
all, without referen
e to the indexing. If Akj and
Bji are dense, but due to trun
ation Cki is not, then the small number of nonzero elements of Cki 
an be 
al
ulatedindividually by multiplying the relevant row of Akj by the 
olumn of Bji and summing the result.These simpli�
ations greatly redu
e the indexing overhead, as they bypass the need for indexing entirely withinthe most time 
onsuming part of the operation. This alone results in very 
onsiderable speedup when the nonzeroelements are well-lo
alized near the matrix diagonal. The total e�ort of this approa
h does not s
ale up with P : thereare O(P 3) pairs of segments to 
onsider in general (loops over j and k on ea
h pro
ess i), but the size of ea
h segments
ales down as 1/P , so the total 
omputational e�ort is 
onstant with P .Furthermore, if one imagines a given system and then in
reases it in size, by s
aling N and P up together, thetotal number of su
h pairs of segments where both are within some range of the diagonal, and thus dense, will onlys
ale as O(N). This is simply a dis
retization of the idea that allows sparse algebra to be O(N) in the �rst pla
e.Therefore the overall 
omputational required for the matrix produ
t remains O(N) even though a large part of it isbeing performed using dense matrix algebra on fairly large matri
es.C. Communi
ations PatternsThere are also signi�
ant advantages to be gained from division into segments in terms of redu
ing 
ommuni
ationsload. Re
all that ea
h pro
ess holds a fra
tion approximately equal to 1/P of the 
olumns of the matrix. Taking thesimplest approa
h, the whole index and all the nonzero elements of A lo
al to pro
ess j would be sent to pro
ess i, inorder that pro
ess i 
ould 
al
ulate all terms 
ontributing to the lo
al data of C. In that 
ase, a total volume of data
O(N/P ) is sent by pro
ess i to P di�erent pro
esses. The total 
ommuni
ations load per pro
ess would thereforegrow as O(N), but would not s
ale down at all with in
reasing P . Asymptoti
ally, wall-
lo
k time 
ould not behaveas O(1/P ) with in
reasing P : a limit would inevitably be rea
hed where 
ommuni
ation of the matrix data to allother pro
esses would be
ome the limiting fa
tor on performan
e.This undesirable situation 
an be avoided though the use of shared information about the segments stored on otherpro
ess. Alongside the 
reation of the index for a matrix A, pro
ess j sends the number of nonzero elements in thesegment numbered i stored on pro
ess j to pro
ess i for future use. When performing a matrix produ
t, pro
ess ithen only needs to re
eive the index and data of A from pro
esses j for whi
h the segment Bji on pro
ess i is notblank. If many o�-diagonal segments of B are blank, this results in a huge saving in the amount of data sent.With this approa
h, if P is in
reased at �xed N , the total 
ommuni
ations load remains 
onstant. In fa
t, as Pand N in
rease proportionally, the 
ommuni
ations load per pro
ess does not have to grow, as there remains onlya small, 
onstant number of other pro
esses with whi
h any 
ommuni
ation is required. Note that this is, in e�e
t,the same prin
iple whi
h allows for O(N) s
aling of the total 
omputational e�ort in the sparse produ
t operation,applied now to the total 
ommuni
ations volume of s
aling the 
al
ulation up to P pro
esses.The segment-based approa
h mandates a further improvement in the parallel 
ommuni
ations algorithm in orderto work e�e
tively. Referen
e [13℄ des
ribed a 
ommuni
ations pattern whereby `blo
king' operations, in whi
h all



8pro
esses re
eived all data from a given pro
ess simultaneously, were repla
ed by a `round-robin' system in whi
hea
h re
eived data �rst from its adja
ent neighbour, then its next-nearest neighbour, and so on in syn
hrony. Thisrepresented an ex
ellent improvement in e�
ien
y over the previous system. However, for this algorithm to s
aleup perfe
tly to large P requires an idealized distribution of nonzero elements in the matri
es involved: the numberof overlaps, and thus the amount of 
omputation involved in 
al
ulating the 
ontribution to the matrix produ
t onpro
ess i of the segments of pro
ess j, needs to remain roughly 
onstant for pro
esses of a given numeri
al separation
|i−j|. In that 
ase, the algorithm 
ould remain near-ideal even in the presen
e of division of the matrix into segmentsand avoidan
e of 
ommuni
ations for non-
ontributing segments.However, an ideal distribution of elements is rarely en
ountered in pra
ti
e, as illustrated by the non-uniformbanding of Fig. 2. The simple algorithm just des
ribed thus begins to s
ale poorly with P at around P = 200and very little further in
rease in speed is obtained beyond about P = 500 [13℄. Note that this was nevertheless asigni�
ant improvement over the e�e
tive P ∼ 64 limit of the `blo
king' 
ommuni
ations approa
h. Given this unevendistribution, it be
omes ne
essary, for large numbers of pro
esses P , to implement an `on-demand' 
ommuni
ationssystem, whereby in order to re
eive the index and data of matrix A, pro
ess i must �rst send a request message topro
ess j, and pro
ess j then replies by sending the required index and data. Despite the fa
t that this method in
ursa laten
y penalty twi
e, this algorithm is almost invariably faster than for
ing all pro
esses to work in syn
hrony, asin the round-robin 
ommuni
ations system. In parti
ular, with simultaneously in
reasing N and P , this approa
hallows the 
ommuni
ations load to s
ale as O(N/P ) as long as ea
h pro
ess only requires 
ommuni
ations with asmall fra
tion of the other pro
esses.A further large redu
tion in the amount of data that must be sent from pro
ess j to pro
ess i 
an be a
hieved evenfor 
ases where there are nonzero elements in segment Bji. For ea
h segment k, only those nonzero blo
ks of Akjwhi
h a
tually 
ontribute to Cki on i need to be sent from pro
ess j to pro
ess i. For this to be the 
ase, there mustbe nonzero blo
ks in Bji whi
h will multiply nonzero blo
ks in Akj su
h that they 
ontribute to nonzero blo
ks of
Cki. A list of su
h 
ontributing blo
ks 
an be formed by having by pro
ess i request and re
eive �rst the indi
es ofea
h the segments Akj on j. Looping over the nonzero blo
ks in the indi
es of Bji and Cki on pro
ess i, a list 
anbe made of those nonzero blo
ks in Akj whi
h 
ontribute to the result. From this, a `
ropped' version of the index of
Akj is 
onstru
ted whi
h 
ontains only the nonzero blo
ks 
ontributing to the result. This list is sent ba
k from i to
j; upon re
eiving it, pro
ess j extra
ts the required blo
ks from the lo
al segments Akj and sends them to pro
ess i.Using this `
ropping' method, any given nonzero blo
k in the data of ea
h Akj is only sent to those pro
esses whi
hneed it, whi
h may be very mu
h less than the total number of pro
esses with whi
h there are any overlaps at all.This results in a very 
onsiderable redu
tion in total 
ommuni
ations volume. Figure 3(a) shows the total amount ofdata sent per pro
ess while performing a typi
al matrix multipli
ation (K · S → KS), with and without `
ropping'the data of A, for a system 
omprising 100 unit 
ells of a (10,0) zigzag 
arbon nanotube (4000 atom). Figure 3(b)shows the wall time for this produ
t operations with and without the 
ropping.III. PERFORMANCEThe hierar
hi
al sparsity s
heme des
ribe here obtains signi�
ant performan
e bene�ts over previous methods inreal simulations. To demonstrate this, we 
ompare the wall 
lo
k time for systems representing �ve 
ommon uses of
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Figure 3: (a) Total data sent per pro
ess and (b) Total time per operation, for a matrix produ
t operation K · S → KSperformed for a 4000-atom 
arbon nanotube, on 32 and 64 pro
esses. This system has four NGWFs per atom, hen
e K, Sand KS are all 16000×16000 matri
es, with roughly 2%, 7% and 10% nonzero elements respe
tively. Results are shown withand without `
ropping' of the data of K before it is sent, showing the de
rease in 
ommuni
ations volume, and the resultingimprovement in both overall time and s
aling. See Fig. 2(a) for a representation of the sparsity pattern of the matrix KS.Abbreviation System Ecut /eV RK/a0 Rφ/a0 Nat Nφ NprojC4000 NT (10,0) 
arbon nanotube 400 20 6.7 4000 16000 36000DNA 64bp 64 base pairs of DNA (Na+-neutralized) 700 30 7.0 4182 9776 25266x6x3 Al2O3 α−alumina 6 × 6 × 3×hexagonal 
ell 1200 24 8.0 3240 12960 18792GaAs NR H-terminated wurtzite GaAs nanorod 400 40 10.0 4296 14376 13440Si4096 Si 
rystal, 8 × 8 × 8×
ubi
 
ell 600 24 6.7 4096 16384 32768Table I: Key to the abbreviations used for the �ve di�erent test systems, 
hosen to represent a 
ross-se
tion of 
ommon usesof LS-DFT (
arbon nanostru
tures, organi
 mole
ules, 
erami
 oxides, semi
ondu
tor nanostru
tures and 
rystals). Choi
esalso represent di�erent extremes of 
uto� energy Ecutand kernel and NGWF 
uto�s RK and Rφ. The number of atoms Nat,number of NGWFs Nφ and number of nonlo
al pseudopotential proje
tors Nprojare also shown.linear-s
aling DFT. These are: (i) a se
tion of a (10,0) zigzag nanotube, (ii) a 64-base pair strand of a mole
ule ofDNA with a random sequen
e of base-pairs (iii) a large orthorhombi
 super
ell of α-alumina (6 × 6 × 3 
opies of the30-atom hexagonal 
ell), (iv) a gallium arsenide nanorod, and (v) a large super
ell (8 × 8 × 8 
opies of the 8-atom
ubi
 
ell) of 
rystalline sili
on (a small-gap semi
ondu
tor). These systems are all of 
omparable size in terms ofnumbers of atoms (around 4000), but display a wide range of levels of matrix sparsity, plane wave 
uto�s, NGWFand kernel 
uto�s and numbers of nonlo
al proje
tors. Table I summarises the details of these test systems. Note inparti
ular the large number of nonlo
al proje
tors in some of these systems. Appendix A des
ribes the appli
ation ofthese sparse algebra te
hniques to the nonlo
al 
ontribution to the Hamiltonian, and the speed up thus obtained inthe routines treating nonlo
al pseudopotentials.In all these tests, we have used 16�64 quad-
ore Intel Core i7 pro
essors with 12GB of memory per pro
essor,i.e. 64�256 individual 
ores. These pro
essors are linked by a dual-in�niband network with very low laten
y.
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Figure 4: Timings for the sparse algebra operations of a typi
al set of runs as a fun
tion of η. A minimum is observed in most
ases for around η = 0.3− 0.4. The dotted line shows the time taken to run with the same parallel 
ommuni
ations algorithm,but without the division into segments, so des
ribing the whole matrix in sparse blo
k-indexed form. In all 
ases, notablespeedup 
an be obtained � with best performan
e for the more linear systems (nanotube, DNA and nanorod).As explained in Se
. II, segments of ea
h matrix stru
ture are determined to be either `blank', `sparse' or `dense'depending on the fra
tion of nonzero elements they 
ontain. The dividing line between `sparse' and `dense' storage anduse is determined by a parameter η, the fra
tional �lling above whi
h a given segment is stored as a full matrix ratherthan indexed. For serial matrix algebra, (where the whole matrix is e�e
tively one `segment') the optimal value forthis is often quoted as of order 0.1, but in the 
ase of parallel matrix algebra, where there is a large 
ontribution to thetotal time from 
ommuni
ations overhead, it may di�er signi�
antly from this value. To �nd a suitable default 
hoi
e,we 
ompare in Fig. 4 the total time spent on sparse matrix produ
t operations during a single NGWF optimisationiteration with ONETEP for these typi
al systems. As η is varied from η = 0, at whi
h point all segments are storedin dense format, to η > 1, at whi
h point all segments are stored in sparse format, the sparse algebra be
omes at�rst more then subsequently less e�
ient, and a minimum is observed for most systems at around η = 0.3− 0.4. Theex
eptions are the solid systems, where due to the 3D periodi
ity, there is a less uniform distribution of overlaps (seeFig. 2(d)), so less bene�t is obtained through matrix sparsity. Nevertheless, η = 0.4 appears to represent a good
ompromise whi
h works well for almost all systems.To show the e�e
t of the new approa
h to sparse matrix algebra on total exe
ution times, Fig. 5(a) shows the totaltime for one NGWF optimisation iteration on 64 parallel 
ores, with and without the appli
ation of the aforementionedalgorithm to sparse algebra. Typi
ally 10�25 iterations are required for full energy minimisation, independent of systemsize, so overall this represents approximately 7�10% of the time for a full 
al
ulation (given the setup and initialisationtime). Exe
ution times are somewhat redu
ed at �xed P = 64 with the new system, in parti
ular the fra
tion devotedto sparse algebra tasks.More signi�
ant, though, is the improved s
aling to larger numbers of pro
essors, as shown in Fig. 5(b), whi
hshows the speedup over 64 
ores a
hievable on 128, 192 and 256 
ores, for both approa
hes. The s
aling is seen to besigni�
antly improved with the 
urrent approa
h, in
reasing the s
ale of 
al
ulations that 
an feasibly be performed.Note that the speedup is normalised to the time on 64 pro
essors for that approa
h (old or new), so any improvement
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Figure 5: (a) Total timings for one NGWF iteration for a range of typi
al systems, on P = 64 parallel pro
esses. (b) Speed-up
T (P )/T (64) a
hieved on P pro
esses relative to time on P = 64 pro
esses with the new (solid lines) and old (dashed lines)approa
hes to sparse algebra.in the speedup is gained on top of the improvement at �xed P = 64 shown in Fig. 5(a).To illustrate more 
learly the s
aling with in
reasing system size N and pro
ess 
ount P , we fo
us on one parti
ulartest system: the DNA strand. This is an isolated non-periodi
 system, typi
al of problems studied in 
omputationalbio
hemistry, and an ideal appli
ation of linear-s
aling methods. The systems simulated 
omprise straight strands ofdeoxyribonu
lei
 a
id, 
onsisting of variable numbers of base pairs AT, TA, CG and GC. The sequen
es were generatedrandomly, with atom positions 
reated with the Nu
lei
 A
id Builder [24℄ 
ode, then phosphate groups neutralizedby adding Na+ ions to the system with the Amber 
ode [25℄. Finally, the positions were relaxed within an empiri
al
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Figure 6: Wall 
lo
k time for strands of random DNA of in
reasing numbers of base pairs (12, 24, 48 and 96), hen
e in
reasingnumbers of atoms, with P = 256. The inset shows the number of iterations required for 
onvergen
e of the NGWF optimisation.There is minor random variation with size, in
luding an apparent upwards trend at low N , but over a wider range of sizes thereis no systemati
 in
rease in iteration number with system size.potential framework, again using Amber. This generated a starting point for DFT where the for
es on the atomswere tolerably low.In Figure 6 we show the wall 
lo
k time for a full single-point energy 
al
ulation of strands of in
reasing length,all run on the same number of 
ores (P = 256). Clear linear-s
aling behaviour is seen over the range, from 2091 to16775 atoms.Figure 7, on the other hand, shows timings for a system of �xed size (64 base pairs, 4184 atoms) as the number ofpro
esses is in
reased. One 
an see that as P in
reases, T initially falls as 1/P but eventually the parallel e�
ien
yde
reases as the number of atoms per 
ore falls to below around 50. For this system, it is possible to go up to around256 
ores before notable ine�
ien
y is observed. For larger systems, this maximum would in
rease.Finally, Fig. 8 represents the most insightful test of parallel e�
ien
y for real-world usage: here we 
ompare totalexe
ution times for an N -atom simulation on P pro
esses where the ratio N/P is kept 
onstant, in that as the sizeof the system in
reases, the number of 
ores the simulation is run on in
reases proportionally. This 
orresponds todemanding a 
onstant, feasible `time-to-s
ien
e', given larger and larger problems on 
orrespondingly larger parallel
omputers. If one wishes to obtain 
ompleted simulations in feasible wall-
lo
k time by in
reasing the number ofpro
esses without limit, then this exe
ution time must be able to remain roughly 
onstant.
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Figure 7: Wall 
lo
k time (left s
ale, squares) and speedup over 64 
ores (right s
ale, 
ir
les) for a full total energy 
al
ulationof a 64 base-pair strand of DNA (4182 atoms) on varying numbers of parallel 
ores (P = 64, 96, 128, 192, 256).As the nearly-�at line of Fig. 8 shows, this goal is very nearly a
hieved with the ONETEP approa
h in the 100�1000pro
essor regime. To take advantage of s
aling to larger systems through the regime of so-
alled `teras
ale' 
omputing(1012 �oating point operations/s) and towards the petas
ale regime (1015 �op/s) e�
iently, 
odes must be able tomaintain this s
aling from to tens of thousands to hundreds of thousands of 
ores. This remains a signi�
ant 
hallengefor a

urate LS-DFT approa
hes.IV. APPLICATION TO DEFECTS IN α-Al2O3The in
reased 
apabilities of this approa
h to sparse algebra enable us to 
al
ulate the formation energy of a 
hargedva
an
ies in alumina in simulation 
ells of signi�
antly in
reased size. Formation energies of 
harged defe
ts in metaloxides are strongly a�e
ted by �nite size e�e
ts on the ele
trostati
 and elasti
 energy, when simulated in periodi
super
ells (see Ref. [2℄ and referen
es therein). The large 
ell sizes a

essible to 
al
ulations with ONETEP allow usto address these �nite size e�e
ts dire
tly, by 
al
ulating formation energies using a a series of larger simulation 
ellsand extrapolating to in�nite size [26℄.The primitive 
ell of α-Al2O3 is trigonal, 
ontaining two formula units (10 atoms), but this is a poor 
hoi
e fordefe
t 
al
ulations as the spa
ing between periodi
 images of the defe
t falls slowly with in
reasing simulation 
ell size,due to the elongated nature of the 
ell. A better approa
h is to form the equivalent 30-atom hexagonal 
ell, repeat it
2 × 2 × 1 times and thus form the 120-atom orthorhombi
 
ell. One 
an then 
onstru
t even larger simulation 
ellsby repeating the 120-atom 
ell: doubling it along ea
h latti
e ve
tor 
reates a 960-atom 
ell and tripling it 
reates



14

0 64 128 192 256
Number of nodes P

0

2

4

6

8

10

T
ot

al
 T

im
e 

(h
)

0 16 32 64 96 128
Number of base pairs

0 64 128 192 256
14
16
18
20
22

It
er

at
io

ns

Figure 8: Wall 
lo
k time for 16, 32, 64 and 128 base-pair strands of DNA exe
uted on 32, 64, 128 and 256 
ores respe
tively,so as to keep the ratio N/P 
onstant (the number of atoms per 
ore). Wall 
lo
k time does not in
rease very greatly � lessthan 30% over nearly an order of magnitude in N . Inset: number of NGWF iterations required for 
onvergen
e of the totalenergy, whi
h varies slightly between di�erent size systems due to random variation in the di�
ulty of attaining 
onvergen
efor di�erent base-pair sequen
es.a 3240-atom 
ell. Traditional plane-wave DFT would operate e�
iently at the s
ale of the 120-atom 
ell. However,sin
e the memory and 
omputational time requirements s
ale as O(N2) and O(N3) respe
tively, the method wouldstruggle with the 960-atom 
ell, and the 3240-atom 
ell would be unfeasible even on state-of-the-art hardware. Notethat when using norm-
onserving pseudopotentials for oxygen, the G-ve
tor grid required to 
onverge the total energyand for
es must be fairly �ne (Ecut = 1200 eV was used here), hen
e the large memory requirements.Limited to one or two points, it is impossible, or at best highly unreliable, to attempt an extrapolation to in�nitesize. Alternate approa
hes to this type of extrapolation have been proposed [2℄ whi
h 
an work with independents
aling of the 
ell along di�erent latti
e ve
tors. However, the validity of this latter approa
h is yet to be veri�eddire
tly, and in any 
ase, the method is only fully reliable in systems where the defe
t is strongly lo
alized and hasnegligible multipole moments beyond the monopole term.Using the new approa
h to sparse algebra and nonlo
al proje
tors des
ribed here, it be
omes feasible to simulate the960- and 3240-atom systems dire
tly, running full geometry optimisations within 
omparatively modest 
omputationalrequirements. We 
an then perform a dire
t extrapolation to in�nite 
ell size of the formation energy as a fun
tion of
1/L, based on the �rst three points of ∆Ef (L). Full geometry relaxation is performed for ea
h defe
t, starting from
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N vM (eV) Eperf (eV) Edef(V

2+
O ) (eV) Edef(V

3−
Al ) (eV) ∆Ef(V

2+
O ) (eV) ∆Ef(V

3−
Al ) (eV)120 3.80 -34356.18 -33937.82 -34259.99 4.39 1.35960 1.90 -274861.26 -274442.68 -274763.72 4.60 2.703240 1.27 -927660.84 -927243.13 -927563.83 4.65 3.08Table II: Super
ell size, Madelung energy vM , total energies of perfe
t and defe
t super
ells and defe
t formation energies (ineV) for V 2+

O and V 3−
Al 
al
ulated with the ONETEP approa
h.
N vM (eV) Eperf (eV) Edef(V

2+
O ) (eV) Edef(V

3−
Al ) (eV) ∆Ef(V

2+
O ) (eV) ∆Ef(V

3−
Al ) (eV)120 3.80 -34357.04 -33938.69 -34260.82 4.38 1.38960 1.90 -274857.27 -274438.71 -274759.79 4.58 2.64Table III: Super
ell size, Madelung energy vM , total energies of perfe
t and defe
t super
ells and defe
t formation energies (ineV) for V 2+

O and V 3−
Al 
al
ulated using the CASTEP plane-wave DFT pa
kage.perfe
t 
ell positions with an atom removed near the 
enter of the 
ell.Defe
t formation energies are 
al
ulated using the approa
h referred to as the Zhang-Northrup formalism [27℄,following Ref. [2℄. We take representative values (spe
i�
 to the 
hoi
e of pseudopotential and fun
tional) of 
hemi
alpotentials for oxygen atoms and aluminium atoms from Ref. [2℄. These areµO = 433.13 eV, µAl = −66.11 eV. Thespe
i�
 
hoi
es of these 
hemi
al potentials do not a�e
t the 
onvergen
e of the formation energy with system size,sin
e they are simply bulk properties depending on the material and 
hosen formation 
onditions, namely the partialpressure pO2

and temperature T of the oxygen atmosphere with whi
h the material is 
onta
t during annealing. These
hoi
es represent T = 1750 K and pO2
= 0.2 atm. The ele
tron 
hemi
al is determined by the requirement of overall
harge neutrality: for the sake of displaying representative values during the extrapolation to in�nite size we shallsimply arbitraily set µe at 1.5 eV above the valen
e band edge at EVBM = −7.84 eV.Table II shows the total energies of the bulk super
ell at di�erent 
ell sizes, the total energies of equivalent super
ells
ontaining V 2+

O defe
ts V 3−
Al defe
ts, and the defe
t formation energies of ea
h. The formation energy of the V 2+

Odefe
t is
Ef (V 2+

O , L) = Edef(L) − Eperf(L) + µO + 2µe , (3)while that of the aluminium va
an
y is
Ef (V 3−

Al , L) = Edef(L) − Eperf(L) + µAl − 3µe . (4)For 
omparison, Table III shows the same 
al
ulations repeated using the CASTEP 
ode [28℄, for the smaller two
ells: the largest 
ell is unfeasibly demanding with the CASTEP approa
h. CASTEP is a traditional 
ubi
-s
alingplane-wave pseudopotential DFT 
ode. Within CASTEP, it is possible to 
hoose exa
tly the same pseudopotential,ex
hange-
orrelation fun
tional and grid spa
ings so as to as near as possible mat
h the ONETEP result. However, asdis
ussed previously [29℄, the fa
t that in plane-wave 
odes su
h as CASTEP, orbitals are expanded in a plane-wavebasis 
ut o� on a sphere in re
ipro
al spa
e, whereas ONETEP is e�e
tively using a full re
tangular grid, means thatthe ONETEP results are e�e
tively obtained at a higher 
uto�, and hen
e return a slightly lower total energy. Despitethis, the formation energies � whi
h are energy di�eren
es � agree remarkably well between the two approa
hes:agreement to within 0.1 eV is seen.



16

0.0 1.0 2.0 3.0 4.0
Madelung Energy (eV)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
D

ef
ec

t F
or

m
at

io
n 

E
ne

rg
y 

(e
V

) ONETEP
CASTEP

V
Al

3-
(a)

0.0 1.0 2.0 3.0 4.0
Madelung Energy (eV)

3.5

4.0

4.5

5.0

5.5

D
ef

ec
t F

or
m

at
io

n 
E

ne
rg

y 
(e

V
) ONETEP

CASTEP

V
O

2+
(b)

Figure 9: S
aling of defe
t formation energy against Madelung energy for (a) Aluminium va
an
y V 3−
Al and (b) Oxygen va
an
y

V 2+
O . The Madelung energy s
ales as 1/L, so the extrapolation to vM → 0 represents extrapolation to the in�nite dilutionlimit.The sheer s
ale of ea
h super
ell total energy (nearing 106 eV in the largest 
ases) emphasises the level of a

ura
yrequired to obtain the defe
t formation energies a

urately at large system sizes. The systemati
 behaviour of thedefe
t formation energy with system size L demonstrates that the energies are su�
iently well-
onverged to be usedreliably in an energy di�eren
e su
h as Eqs. 3 and 4, and that 
an
ellation of error between large similar systems isoperating bene�
ially.Figure 9(a) shows ∆Ef(V

2+
O ) as a fun
tion of vM ∝ 1/L, while Figure 9(b) shows the formation energy Ef (V 3−

Al )of the V 3−
Al defe
t. Also shown is a linear �t to vM , under the assumption that the dominant term in the �nite-sizeerror is a monopole-monopole term. Su
h an assumption 
an be shown to give [30, 31℄

∆EFS =
q2vM

2ǫfit
, (5)where ǫfit is a �tting parameter dependent on the defe
t. This �tting parameter is loosely related to the stati
 diele
tri

onstant of the material, but varies signi�
antly between di�erent defe
ts even in the same material, motivating theneed for a �t and extrapolation, rather than a single-shot 
orre
tion of a result for a small super
ell.While there is not enough data to perform statisti
al analysis, the 
ombination of a 
lose agreement between thelinear �t with the data, plus the good agreement between the ONETEP results and the available CASTEP resultssuggests both that the model is a

urate and that the ONETEP results are su�
iently well-
onverged to give a

urateresults in these very large systems. The resulting extrapolated defe
t formation energies, at these 
hosen values of
hemi
al potential, give ∆Ef(V

2+
O ) =4.78 eV and Ef (V 3−

Al ) =3.97 eV.Notably, if the un
orre
ted value from the N = 120 super
ell had been been used, the resulting �nite size erroron the formation energies would have been 0.4 eV and 2.6 eV respe
tively. Similarly, as shown in Table IV, whilethe bond lengths in the region immediately around the defe
t site (the �rst nearest-neighbour (1NN) shell) are 
loseto 
onvergen
e at N = 120, those far away are barely di�erent from their bulk values, sin
e the arti�
ial symmetry



17System r1NN(a0) r2NN(a0) r3NN(a0)Perfe
t 
rystal 3.5582 5.0666 6.3415
V 2+

O in 120-atom 
ell 4.0030 4.9653 6.3444
V 2+

O in 960-atom 
ell 4.0006 4.9572 6.3483
V 2+

O in 3240-atom 
ell 4.0116 4.9773 6.3652Table IV: Mean distan
es from the va
an
y site to the shells of nearest neighbours of V 2+
O as system size in
reases. Nearestneighbours (1NN) are four Al ions, 2NN are twelve O ions, 3NN are six Al ions. In the smallest 
ell, the 3NN ions are
onstrained by the arti�
ial periodi
ity to hardly move from their bulk positions. In
reasing the 
ell size allows them to relax,but the relaxations are slow to 
onverge to their in�nite 
ell-size limit.imposed by the periodi
 boundary 
onditions prevents the relaxation the defe
t would normally indu
e. It 
an beseen that only by going to the largest system size do the 3NN distan
es begin to 
hange signi�
antly from their bulkvalues.By assuming the simplest form of disorder involving these two defe
t spe
ies, namely S
hottky equilibrium, we 
anmake a very rough estimate of the dependen
e of defe
t 
on
entrations on the simulation 
ell size, through the �nitesize errors on the formation energy. We make the 
rude approximation of repla
ing the temperature-dependent freeenergy with the 0 K DFT total energy. We then relate the va
an
y 
on
entrations per formula unit of Al2O3 attemperature T to the formation energies, through

[V 2+
O ] = 3e−∆Ef (V 2+

O
)/(kT ) ,

[V 3−
Al ] = 2e−∆Ef (V 3−

Al
)/(kT ) .Assuming perfe
t S
hottky equilibrium and overall 
harge-neutrality we then have

3[V 2+
O ] = 2[V 3−

Al ] ,and hen
e we 
an estimate the position of the ele
tron 
hemi
al potential whi
h gives 
harge neutrality as:
µe =

1

5

(

Edef(V
3−
Al ) − Edef(V

2+
O ) + µAl − µO + kT ln

4

9

)

.Finally, therefore, we 
an estimate the e�e
t of the �nite size errors on the 
on
entrations one would 
al
ulate usingthe un
orre
ted results, as a fun
tion of 
ell size. This is shown in Table V for a typi
al annealing temperature(T = 1750 K). An error of four orders of magnitude is seen to result from the �nite size e�e
t at the smallest 
ellsize 
ompared to its in�nite-size extrapolation. Note that these 
on
entrations likely represent quite a signi�
antunderestimate of the real 
on
entrations under similar 
onditions due to the negle
t of the vibrational 
ontributionto the free energy.The slow 
onvergen
e of all these properties, and the very large �nite size errors on small super
ells, more thanjustify the need for the 
ombination of large super
ells and extrapolation to the in�nite limit. Furthermore, more
omplex defe
ts su
h as 
lusters of intrinsi
 defe
ts and substitutional dopants do not behave as point 
harges, andmust be treated in even larger simulation 
ells to a

urately remove the e�e
t of �nite size errors. The need for alinear-s
aling formalism in the study of defe
ts in su
h materials is therefore 
lear.



18System µe (eV) [V 2+
O ] per f.u. [V 3−

Al ] per f.u.120-atom 
ell 8.99 1.56×10−9 2.34×10−9960-atom 
ell 9.23 2.03×10−11 3.05×10−113240-atom 
ell 9.29 5.61×10−12 8.41×10−12In�nte-size extrapolation 9.44 3.12×10−13 4.68×10−13Table V: Dependen
e of the estimated 
on
entrations of oxygen and aluminium va
an
ies per formula unit on system size,through �nite size errors on formation energies. V. CONCLUSIONWe have des
ribed a number of advan
es to the methodology underlying linear-s
aling density fun
tional theory,implemented here in the ONETEP 
ode. We have presented a uni�ed approa
h to sparse algebra suited to 
al
ulationof the sparse matrix produ
t operations typi
ally en
ountered in linear-s
aling ele
troni
 stru
ture theory, suitablea
ross a very wide range of system sizes and types, and whi
h s
ales well over a wide range of numbers of parallelpro
esses. The `segments' des
ribed, whi
h are the segments of the rows asso
iated with a given parallel pro
essbelonging to the 
olumns of a se
ond given pro
ess, form a natural se
ond level of hierar
hy over and above theatom-blo
ks that emerge naturally from a basis 
onsisting of atom-
entered lo
alized fun
tions. These segments allowuse of optimally-sized dense algebra to in
rease performan
e, whi
h along with a framework for signi�
ant redu
tionin the 
ommuni
ation demands of sparse matrix algebra.We have then applied this new s
heme to a 
hallenging 
al
ulation of the size-
onvergen
e of the formation energyof 
harged point defe
ts in alumina (α-Al2O3). Alumina is a 
hallenging material for �rst-prin
iples simulation,sin
e its 
ombination of a low-symmetry stru
ture with high ioni
 
harges means that large simulation 
ells must beused when 
al
ulating properties of systems with lo
alized 
harge, su
h as point defe
ts. The 
ombination providedby the ONETEP formalism, of high a

ura
y, equivalent to that of the plane-wave approa
h, with linear-s
aling
omputational e�ort, allowing a

ess to system sizes in the thousands of atoms, has been shown to be su�
ient toprovide 
onverged results for the formation energies of intrinsi
 va
an
ies in this material.A
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19Appendix A: NONLOCAL PSEUDOPOTENTIAL MATRICESThe sparse algebra algorithms presented in this work have been designed to treat matri
es with di�erent blo
kings
hemes (in terms of numbers of elements per blo
k) for rows and 
olumns on equal footing, and even mix the two.This enables additional parts of the 
al
ulation to be treated with distributed sparse matrix algorithms.In standard LDA or GGA DFT 
al
ulations, the Hamiltonian is 
omposed of the 
ontributions Ĥ = T̂ + V̂Hlxc + V̂nl,where T̂ is kineti
 energy, V̂Hlxc is the total lo
al potential (Hartree, ex
hange-
orrelation and lo
al ioni
 pseudopo-tential 
ontributions), and V̂nl is the non-lo
al ioni
 pseudopotential expressed in standard Kleinman-Bylander form[32℄ as a sum over nonlo
al proje
tors. These three operators 
orrespond to sparse matri
es Tαβ , V Hlxc
αβ and V nl

αβ inthe NGWF basis, given by
Tαβ = 〈φα| −

1

2
∇2|φβ〉 ,

V Hlxc
αβ = 〈φα|V̂Hlxc|φβ〉 ,

V nl
αβ =

Nproj
∑

i=1

〈φα|χi〉〈χi|φβ〉

Di
,where |χi〉 are the nonlo
al pseudopotential proje
tors, Di are the Kleinman-Bylander denominators, and Nproj is thetotal number of proje
tors in the system.Cal
ulation of the overlaps 〈φα|χi〉 between NGWFs and proje
tors is performed in ONETEP using the FFT-boxapproa
h [33℄. The FFT-box is a lo
alized box surrounding the atom on whi
h NGWF φα is lo
ated, of size typi
allyof side length 6Rφ, where Rφ is the largest NGWF radius required in the system. For stri
tly lo
alized fun
tionssu
h as NGWFs and nonlo
al pseudopotential proje
tors, the FFT-box allows the advantages of the use of Fouriertransforms in plane-wave DFT to be 
arried over to the linear-s
aling formalism.To 
al
ulate 〈φα|χi〉 one evaluates the proje
tor in re
ipro
al spa
e, by interpolating χi(q) on to the grid points

GFFT of the re
ipro
al-spa
e FFT-box; then one performs the Fourier transform on the FFT-box to obtain χi(r);�nally, the ppds of χi(r) whi
h overlap ppds of φα(r) are extra
ted from the FFT-box and used to �nd the overlap
〈φα|χi〉.Given that the relevant NGWF data for φα will generally not reside on the same pro
ess as the proje
tor data,there are two possible approa
hes to the 
ommuni
ations required for this algorithm to work in parallel: either one
ould re
reate ea
h proje
tor on every parallel pro
ess holding an NGWF overlapping that proje
tor, or one 
ouldgenerate ea
h proje
tor on
e (on the pro
ess whi
h holds its atom), and then 
ommuni
ate ea
h NGWF overlappingthat proje
tor from the pro
esses whi
h hold them. In pra
ti
e, the latter allows a large saving in 
omputational e�ortas long as the 
ommuni
ations overhead of NGWF 
ommuni
ation is less than the 
omputational time of generatingthe proje
tors many times over on di�erent pro
esses.We therefore use the latter approa
h to generate the blo
k-indexed sparse matrix Pαi = 〈φα|χi〉, whose 
olumns i
orrespond to proje
tor kets |χi〉 and whose rows α 
orrespond to NGWF bras 〈φα|. From this matrix, it is trivialto also form Riβ = 〈χi|φβ〉, the transpose of Pαi. Then, using the aforementioned sparse produ
t algorithm, one 
an
al
ulate the nonlo
al matrix as

V nl
αβ =

∑

i

PαiD
−1
i Riβ .



20A similar representation 
an be used to generate the nonlo
al pseudopotential 
ontribution to the NGWF gradiente�
iently. The nonlo
al pseudopotential 
ontribution to the bandstru
ture energy Enl 
an be written in terms of thenonlo
al matrix as a tra
e of its produ
t with the density kernel, as Enl = V nl
βαKαβ . To optimise the NGWFs, werequire the gradient of this quantity with respe
t to 
hanges in the value of the NGWF φα at position r, so we have

δEnl

δφα(r)
= 2

Nproj
∑

i=1

χi(r)
∑

β

〈χi|φβ〉K
βα

Di

= 2

Nproj
∑

i=1

χi(r)Q α
i . (A1)Again, Q α

i = D−1
i RiβKβα 
an be 
onstru
ted e�
iently through use of the above sparse produ
t algorithm.Furthermore, sin
e all the proje
tors χi whi
h 
ontribute to the gradient for a given φα need to be 
onstru
ted inthe same FFT-box 
entered on the atom of φα, another improvement is possible. Note that in any system, there aregenerally only a small number of di�erent types of proje
tor, Nsp, sin
e for ea
h atom type, there is a set of nonlo
al
hannels with angular momentum values l = 0, . . . , lmax and for ea
h 
hannel, azimuthal angular momentum values

m = −l, ..., l.For ea
h proje
tor spe
ies s, we denote by χs(G) the proje
tor evaluated in re
ipro
al spa
e for a proje
tor at theorigin in real spa
e. To translate it to its 
orre
t position within the FFT-box of φα, a phase shift of eiG·(Ri−Rα) isapplied in re
ipro
al spa
e, where Ri is the position of the atom of proje
tor i and Rα is the position of the atom of
φα.We 
an write Eq. A1 in terms of a sum over spe
ies and over proje
tors of that spe
ies, making the Fourier transformrequired to 
onstru
t χi(r) expli
it:

∂Enl

∂φα(r)
= 2F





Nsp
∑

s=1





Nproj(s)
∑

i=1

Q α
i eiG·tiα



 χs(G)



 . (A2)The term inside the innermost bra
kets is in e�e
t a re
ipro
al-spa
e stru
ture fa
tor for ea
h proje
tor spe
ies,evaluated on the re
ipro
al spa
e grid the FFT box. Constru
ting this stru
ture fa
tor and then multiplying it bythe proje
tor in re
ipro
al spa
e allows one to avoid the work of repeated evaluation of repeatedly multiply-adds ofthe whole proje
tor.Figure 10 shows the 
omputational time required for evaluation of 〈φα|χi〉, V nl
αβ and ∂Enl/∂φα(r) in the test systems.Figure 10(a) shows the timings with the previous unparallelized approa
h, while Fig. 10(b) shows timings with thesystem just des
ribed. The 
omputational e�ort saved is dramati
, parti
ularly in large solid systems with largenumbers of densely-overlapping NGWFs and proje
tors. The approa
h is also very mu
h more parallelizable. Figure10(
) shows the total time for evaluation of ea
h of the above quantities for the 960-atom alumina system on 32, 64,128 and 256 
ores, demonstrating near-ideal s
aling with 1/P .
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