146 research outputs found

    Micron-sized atom traps made from magneto-optical thin films

    Full text link
    We have produced magnetic patterns suitable for trapping and manipulating neutral atoms on a 1μ1 \mum length scale. The required patterns are made in Co/Pt thin films on a silicon substrate, using the heat from a focussed laser beam to induce controlled domain reversal. In this way we draw lines and "paint" shaped areas of reversed magnetization with sub-micron resolution. These structures produce magnetic microtraps above the surface that are suitable for holding rubidium atoms with trap frequencies as high as ~1 MHz.Comment: 6 pages, 7 figure

    Fabrication of micromirrors with pyramidal shape using anisotropic etching of silicon

    No full text
    Gold micro-mirrors have been formed in silicon in an inverted pyramidal shape. The pyramidal structures are created in the (100) surface of a silicon wafer by anisotropic etching in potassium hydroxide. High quality micro-mirrors are then formed by sputtering gold onto the smooth silicon (111) faces of the pyramids. These mirrors show great promise as high quality optical devices suitable for integration into MOEMS systems

    Experiment to Detect Dark Energy Forces Using Atom Interferometry

    Get PDF
    The accelerated expansion of the universe motivates a wide class of scalar field theories that modify General Relativity (GR) on large scales. Such theories require a screening mechanism to suppress the new force in regions where the weak field limit of GR has been experimentally tested. We have used atom interferometry to measure the acceleration of an atom toward a macroscopic test mass inside a high vacuum chamber, where new forces can be unscreened. Our measurement shows no evidence of new forces, a result that places stringent bounds on chameleon and symmetron theories of modified gravity

    Prospects for sympathetic cooling of molecules in electrostatic, ac and microwave traps

    Get PDF
    We consider how trapped molecules can be sympathetically cooled by ultracold atoms. As a prototypical system, we study LiH molecules co-trapped with ultracold Li atoms. We calculate the elastic and inelastic collision cross sections of 7LiH + 7Li with the molecules initially in the ground state and in the first rotationally excited state. We then use these cross sections to simulate sympathetic cooling in a static electric trap, an ac electric trap, and a microwave trap. In the static trap we find that inelastic losses are too great for cooling to be feasible for this system. The ac and microwave traps confine ground-state molecules, and so inelastic losses are suppressed. However, collisions in the ac trap can take molecules from stable trajectories to unstable ones and so sympathetic cooling is accompanied by trap loss. In the microwave trap there are no such losses and sympathetic cooling should be possible

    Quantum gates with neutral atoms: Controlling collisional interactions in time dependent traps

    Get PDF
    We theoretically study specific schemes for performing a fundamental two-qubit quantum gate via controlled atomic collisions by switching microscopic potentials. In particular we calculate the fidelity of a gate operation for a configuration where a potential barrier between two atoms is instantaneously removed and restored after a certain time. Possible implementations could be based on microtraps created by magnetic and electric fields, or potentials induced by laser light.Comment: 10 pages, 3 figure

    An adaptive inelastic magnetic mirror for Bose-Einstein condensates

    Get PDF
    We report the reflection and focussing of a Bose-Einstein condensate by a new pulsed magnetic mirror. The mirror is adaptive, inelastic, and of extremely high optical quality. The deviations from specularity are less than 0.5 mrad rms, making this the best atomic mirror demonstrated to date. We have also used the mirror to realize the analog of a beam-expander, producing an ultra-cold collimated fountain of matter wavesComment: 4 pages, 4 figure

    Trapped-Atom-Interferometer in a Magnetic Microtrap

    Get PDF
    We propose a configuration of a magnetic microtrap which can be used as an interferometer for three-dimensionally trapped atoms. The interferometer is realized via a dynamic splitting potential that transforms from a single well into two separate wells and back. The ports of the interferometer are neighboring vibrational states in the single well potential. We present a one-dimensional model of this interferometer and compute the probability of unwanted vibrational excitations for a realistic magnetic potential. We optimize the speed of the splitting process in order suppress these excitations and conclude that such interferometer device should be feasible with currently available microtrap technique.Comment: 6 pages, 6 figures, submitted to PR

    Probing dark energy with atom interferometry

    Get PDF
    Theories of dark energy require a screening mechanism to explain why the associated scalar fields do not mediate observable long range fifth forces. The archetype of this is the chameleon field. Here we show that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity. We derive new limits on the chameleon parameters from existing experiments, and show that most of the remaining chameleon parameter space is readily accessible using atom interferometry

    Wave function recombination instability in cold atom interferometers

    Full text link
    Cold atom interferometers use guiding potentials that split the wave function of the Bose-Einstein condensate and then recombine it. We present theoretical analysis of the wave function recombination instability that is due to the weak nonlinearity of the condensate. It is most pronounced when the accumulated phase difference between the arms of the interferometer is close to an odd multiple of PI and consists in exponential amplification of the weak ground state mode by the strong first excited mode. The instability exists for both trapped-atom and beam interferometers.Comment: 4 pages, 5 figure

    Quantum anti-centrifugal force

    Full text link
    In a two-dimensional world a free quantum particle of vanishing angular momentum experiences an attractive force. This force originates from a modification of the classical centrifugal force due to the wave nature of the particle. For positive energies the quantum anti-centrifugal force manifests itself in a bunching of the nodes of the energy wave functions towards the origin. For negative energies this force is sufficient to create a bound state in a two-dimensional delta function potential. In a counter-intuitive way the attractive force pushes the particle away from the location of the delta function potential. As a consequence, the particle is localized in a band-shaped domain around the originComment: 8 pages, including three eps figures, submitted to Phys. Rev. A. Figures substitute
    corecore