1,059 research outputs found

    Going Big: A Large-Scale Study on What Big Data Developers Ask

    Full text link
    Software developers are increasingly required to write big data code. However, they find big data software development challenging. To help these developers it is necessary to understand big data topics that they are interested in and the difficulty of finding answers for questions in these topics. In this work, we conduct a large-scale study on Stackoverflow to understand the interest and difficulties of big data developers. To conduct the study, we develop a set of big data tags to extract big data posts from Stackoverflow; use topic modeling to group these posts into big data topics; group similar topics into categories to construct a topic hierarchy; analyze popularity and difficulty of topics and their correlations; and discuss implications of our findings for practice, research and education of big data software development and investigate their coincidence with the findings of previous work

    On the naturalness of software

    Get PDF
    Natural languages like English are rich, complex, and powerful. The highly creative and graceful use of languages like English and Tamil, by masters like Shakespeare and Avvaiyar, can certainly delight and inspire. But in practice, given cognitive constraints and the exigencies of daily life, most human utterances are far simpler and much more repetitive and predictable. In fact, these utterances can be very usefully modeled using modern statistical methods. This fact has led to the phenomenal success of statistical approaches to speech recognition, natural language translation, question-answering, and text mining and comprehension. We begin with the conjecture that most software is also natural, in the sense that it is created by humans at work, with all the attendant constraints and limitations---and thus, like natural language, it is also likely to be repetitive and predictable. We then proceed to ask whether (a) code can be usefully modeled by statistical language models and (b) such models can be leveraged to support software engineers. Using the widely adopted n-gram model, we provide empirical evidence supportive of a positive answer to both these questions. We show that code is also very regular, and, in fact, even more so than natural languages. As an example use of the model, we have developed a simple code completion engine for Java that, despite its simplicity, already improves Eclipse's completion capability. We conclude the paper by laying out a vision for future research in this area

    Experiences of first-generation scholars at a highly selective UK university

    Get PDF
    Targets set by the UK Office for Students require highly academically selective UK universities to enrol a greater percentage of students identified as least likely to participate in higher education. Such students are typically at a disadvantage in terms of levels of academic preparedness and economic, cultural and social capital. Drawing on 18 interviews with first generation students at Durham University, we identify five sites of pressure: developing a sense of belonging within the terms of an elite university culture; engagement in student social activities; financial worries; concerns about academic progress, and self-transformation. Based on these insights, we argue that support for first generation scholars will require that universities recognise and redress elitist cultures that discourage applications from prospective first-generation scholars ultimately ensuring those who do enrol have the best educational and all-round experience

    Topographical variation reduces phenological mismatch between a butterfly and its nectar source

    Get PDF
    © 2014, Springer International Publishing Switzerland. The timing of many biological events, including butterfly imago emergence, has advanced under climate change, with the rate of these phenological changes often differing among taxonomic groups. Such inter-taxa variability can lead to phenological mismatches. For example, the timing of a butterfly’s flight period may become misaligned with a key nectar resource, potentially increasing the extinction risk to both species. Here we fit statistical models to field data to determine how the phenology of the marbled white butterfly, Melanargia galathea, and its main nectar source, greater knapweed, Centaurea scabiosa, have changed over recent years at three sites across the UK. We also consider whether topographical diversity affects C. scabiosa’s flowering period. At our focal site, on the species’ northern range limit, we find that over a 13-year period the onset of C. scabiosa’s flowering period has become later whilst there is no obvious trend over time in the onset of M. galathea’s flight period. In recent years, butterflies have started to emerge before their key nectar source was available across most of the site. This raises the intriguing possibility that phenological mismatch could be an unrecognised determinant of range limits for some species. However, the presence of topographical diversity within the site decreased the chance of a mismatch occurring by increasing the length of the flowering period by up to 14days. We suggest that topographical diversity could be an important component in minimising phenological mismatches under future climate change

    Investigation of shock waves in explosive blasts using fibre optic pressure sensors

    Get PDF
    The published version of this article may be accessed at the link below. Copyright @ IOP Publishing, 2006.We describe miniature all-optical pressure sensors, fabricated by wafer etching techniques, less than 1 mm(2) in overall cross-section with rise times in the mu s regime and pressure ranges typically 900 kPa (9 bar). Their performance is suitable for experimental studies of the pressure-time history for test models exposed to shocks initiated by an explosive charge. The small size and fast response of the sensors promises higher quality data than has been previously available from conventional electrical sensors, with potential improvements to numerical models of blast effects. Results from blast tests are presented in which up to six sensors were multiplexed, embedded within test models in a range of orientations relative to the shock front.Support from the UK Engineering&Physical Sciences Research Council and Dstl Fort Halstead through the MoD Joint Grants Scheme are acknowledged. WN MacPherson is supported by an EPSRC Advanced Research Fellowship

    TRANSFERABILITY OF A PREVIOUSLY VALIDATED IMU SYSTEM FOR LOWER EXTREMITY KINEMATICS

    Get PDF
    This study tested transferability and validity of an Inertial Measurement Unit (IMU) system for estimation of lower limb kinematics. Peak hip, knee, and plantarflexion angles and sagittal plane range of motion (ROM) were compared during body weight squats (BWSQ) and countermovement jumps (CMJ) in 16 participants using root mean square error (RMSE) and intraclass correlation coefficients (ICC). RMSE wa
    corecore