3,167 research outputs found

    BrlAPI: Simple, Portable, Concurrent, Application-level Control of Braille Terminals

    Get PDF
    Screen readers can drive braille devices for allowing visually impaired users to access computer environments, by providing them the same information as sighted users. But in some cases, this view is not easy to use on a braille device. In such cases, it would be much more useful to let applications provide their own braille feedback, specially adapted to visually impaired users. Such applications would then need the ability to output braille ; however, allowing both screen readers and applications access a wide panel of braille devices is not a trivial task. We present an abstraction layer that applications may use to communicate with braille devices. They do not need to deal with the specificities of each device, but can do so if necessary. We show how several applications can communicate with one braille device concurrently, with BrlAPI making sensible choices about which application eventually gets access to the device. The description of a widely used implementation of BrlAPI is included

    Frequency domain model of ff-mode dynamic tides in gravitational waveforms from compact binary inspirals

    Full text link
    The recent detection of gravitational waves (GWs) from the neutron star binary inspiral GW170817 has opened a unique avenue to probe matter and fundamental interactions in previously unexplored regimes. Extracting information on neutron star matter from the observed GWs requires robust and computationally efficient theoretical waveform models. We develop an approximate frequency-domain GW phase model of a main GW signature of matter: dynamic tides associated with the neutron stars' fundamental oscillation modes (ff-modes). We focus on nonspinning objects on circular orbits and demonstrate that, despite its mathematical simplicity, the new "ff-mode tidal" (fmtidal) model is in good agreement with the effective-one-body dynamical tides model up to GW frequencies of 1\gtrsim 1 kHz and gives physical meaning to part of the phenomenology captured in tidal models tuned to numerical-relativity. The advantages of the fmtidal model are that it makes explicit the dependence of the GW phasing on the characteristic equation-of-state parameters, i.e., tidal deformabilities and ff-mode frequencies; it is computationally efficient; and it can readily be added to any frequency-domain baseline waveform. The fmtidal model is easily amenable to future improvements and provides the means for a first step towards independently measuring additional fundamental properties of neutron star matter beyond the tidal deformability as well as performing novel tests of general relativity from GW observations.Comment: 7 pages, 3 figures; matches published versio

    Spin effects on gravitational waves from inspiraling compact binaries at second post-Newtonian order

    Get PDF
    We calculate the gravitational waveform for spinning, precessing compact binary inspirals through second post-Newtonian order in the amplitude. When spins are collinear with the orbital angular momentum and the orbits are quasi-circular, we further provide explicit expressions for the gravitational-wave polarizations and the decomposition into spin-weighted spherical-harmonic modes. Knowledge of the second post-Newtonian spin terms in the waveform could be used to improve the physical content of analytical templates for data analysis of compact binary inspirals and for more accurate comparisons with numerical-relativity simulations.Comment: 15 pages, expressions available in mathematica format upon reques

    Gravitational-Wave Asteroseismology with Fundamental Modes from Compact Binary Inspirals

    Get PDF
    The first detection of gravitational waves (GWs) from the binary neutron star (NS) inspiral GW170817 has opened a unique channel for probing the fundamental properties of matter at supra-nuclear densities inaccessible elsewhere in the Universe. This observation yielded the first constraints on the equation of state (EoS) of NS matter from the GW imprint of tidal interactions. Tidal signatures in the GW arise from the response of a matter object to the spacetime curvature sourced by its binary companion. They crucially depend on the EoS and are predominantly characterised by the tidal deformability parameters Λ\Lambda_{\ell}, where =2,3\ell=2,3 denotes the quadrupole and octupole respectively. As the binary evolves towards merger, additional dynamical tidal effects become important when the orbital frequency approaches a resonance with the stars' internal oscillation modes. Among these modes, the fundamental (ff_\ell-)modes have the strongest tidal coupling and can give rise to a cumulative imprint in the GW signal even if the resonance is not fully excited. Here we present the first direct constraints on fundamental oscillation mode frequencies for GW170817 using an inspiral GW phase model with an explicit dependence on the ff-mode frequency and without assuming any relation between ff_\ell and Λ\Lambda_\ell. We rule out anomalously small values of ff_\ell and, for the larger companion, determine a lower bound on the f2f_2-mode (f3f_3-mode) frequency of 1.39\geq 1.39 kHz (1.86\geq 1.86 kHz) at the 90\% credible interval (CI). We then show that networks of future GW detectors will be able to measure ff-mode frequencies to within tens of Hz from the inspiral alone. Such precision astroseismology will enable novel tests of fundamental physics and the nature of compact binaries.Comment: 8 pages, 5 figure

    Remnant baryon mass outside of the black hole after a neutron star-black hole merger

    Get PDF
    Gravitational-wave (GW) and electromagnetic (EM) signals from the merger of a Neutron Star (NS) and a Black Hole (BH) are a highly anticipated discovery in extreme gravity, nuclear-, and astrophysics. We develop a simple formula that distinguishes between merger outcomes and predicts the post-merger remnant mass, validated with 75 simulations. Our formula improves on existing results by describing critical unexplored regimes: comparable masses and higher BH spins. These are important to differentiate NSNS from NSBH mergers, and to infer source physics from EM signals.Comment: 9 pages, 5 figures, 2 table

    Tidal Love numbers of neutron stars

    Full text link
    For a variety of fully relativistic polytropic neutron star models we calculate the star's tidal Love number k2. Most realistic equations of state for neutron stars can be approximated as a polytrope with an effective index n~0.5-1.0. The equilibrium stellar model is obtained by numerical integration of the Tolman-Oppenheimer-Volkhov equations. We calculate the linear l=2 static perturbations to the Schwarzschild spacetime following the method of Thorne and Campolattaro. Combining the perturbed Einstein equations into a single second order differential equation for the perturbation to the metric coefficient g_tt, and matching the exterior solution to the asymptotic expansion of the metric in the star's local asymptotic rest frame gives the Love number. Our results agree well with the Newtonian results in the weak field limit. The fully relativistic values differ from the Newtonian values by up to ~24%. The Love number is potentially measurable in gravitational wave signals from inspiralling binary neutron stars.Comment: corrected Eqs. (20) and (23) and entries in Table (1
    corecore