15 research outputs found

    Identification of an enhancer that increases miR-200b~200a~429 gene expression in breast cancer cells

    Get PDF
    The miR-200b~200a~429 gene cluster is a key regulator of EMT and cancer metastasis, however the transcription-based mechanisms controlling its expression during this process are not well understood. We have analyzed the miR-200b~200a~429 locus for epigenetic modifications in breast epithelial and mesenchymal cell lines using chromatin immunoprecipitation assays and DNA methylation analysis. We discovered a novel enhancer located approximately 5.1kb upstream of the miR-200b~200a~429 transcriptional start site. This region was associated with the active enhancer chromatin signature comprising H3K4me1, H3K27ac, RNA polymerase II and CpG dinucleotide hypomethylation. Luciferase reporter assays revealed the upstream enhancer stimulated the transcription of the miR-200b~200a~429 minimal promoter region approximately 27-fold in breast epithelial cells. Furthermore, we found that a region of the enhancer was transcribed, producing a short, GC-rich, mainly nuclear, non-polyadenylated RNA transcript designated miR-200b eRNA. Over-expression of miR-200b eRNA had little effect on miR-200b~200a~429 promoter activity and its production did not correlate with miR-200b~200a~429 gene expression. While additional investigations of miR-200b eRNA function will be necessary, it is possible that miR-200b eRNA may be involved in the regulation of miR-200b~200a~429 gene expression and silencing. Taken together, these findings reveal the presence of a novel enhancer, which contributes to miR-200b~200a~429 transcriptional regulation in epithelial cells.Joanne L. Attema, Andrew G. Bert, Yat-Yuen Lim, Natasha Kolesnikoff, David M. Lawrence, Katherine A. Pillman, Eric Smith, Paul A. Drew, Yeesim Khew-Goodall, Frances Shannon, Gregory J. Goodal

    NATURAL RESOURCE POLICY AND COLLABORATIVE PROCESSES

    No full text

    Active Notch1 Confers a Transformed Phenotype to Primary Human Melanocytes

    No full text
    The importance of MAPK signaling in melanoma is underscored by the prevalence of activating mutations in N-Ras and B-Raf; yet, clinical development of inhibitors of this pathway has been largely ineffective, suggesting that alternative oncogenes may also promote melanoma. Notch is an interesting candidate that has only been correlated with melanoma development and progression; a thorough assessment of tumor-initiating effects of activated Notch on human melanocytes would clarify the mounting correlative evidence and perhaps identify a novel target for an otherwise untreatable disease. Analysis of a substantial panel of cell lines and patient lesions demonstrated that Notch activity is significantly higher in melanomas than their non-transformed counterparts. The use of a constitutively-active, truncated Notch transgene construct (N IC ) was exploited to determine if Notch activation is a ‘driving’ event in melanocytic transformation or instead a ‘passenger’ event associated with melanoma progression. N IC -infected melanocytes displayed increased proliferative capacity and biological features more reminiscent of melanoma such as dysregulated cell adhesion and migration. Gene expression analyses supported these observations and aided in the identification of MCAM, an adhesion molecule associated with acquisition of the malignant phenotype, as a direct target of Notch transactivation. N IC -positive melanocytes grew at clonal density, proliferated in limiting media conditions, and also exhibited anchorage-independent growth suggesting that Notch, alone, is a transforming oncogene in human melanocytes, a phenomenon not previously described for any melanoma oncogene; this new information yields valuable insight into the basic epidemiology of melanoma and launches a realm of possibilities for drug intervention in this deadly disease
    corecore