59 research outputs found

    Spermatids do it differently! : Paip2a-the essential regulator of spermiogenesis?

    Get PDF
    The mechanisms underpinning the latter stages of spermiogenesis are poorly understood and male germ cells have been presumed to extensively employ post-transcriptional regulatory machinery, in order to produce the highly differentiated spermatozoa, in the absence of newly synthesized gene transcripts. Excitingly, in a recently published paper in the Journal of Clinical Investigation, two groups at McGill University, using null mouse models, have identified a crucial role of the poly(A)-binding protein-interacting protein 2 (Paip2a), in translational activation and protein homeostasis in the transcriptionally quiescent and terminally differentiating elongating spermatids

    Ttk69-dependent repression of lozenge prevents the ectopic development of R7 cells in the Drosophila larval eye disc

    Get PDF
    Background: During the development of the Drosophila eye, specific cell types differentiate from an initially equipotent group of uncommitted precursor cells. The lozenge (lz) gene, which is a member of the Runt family of transcriptional regulators, plays a pivotal role in mediating this process through regulating the expression of several fate-specifying transcription factors. However, the regulation of lz, and the control of lz expression levels in different cell types is not fully understood. Results: Here, we show a genetic interaction between Tramtrack69 (Ttk69) a key transcriptional repressor and an inhibitor of neuronal fate specification, and lz, the master patterning gene of cells posterior to the morphogenetic furrow in the Drosophila eye disc. Loss of Ttk69 expression causes the development of ectopic R7 cells in the third instar eye disc, with these cells being dependent upon Lz for their development. Using the binary UAS Gal4 system, we show that overexpression of Ttk69 causes the loss of lz-dependent differentiating cells, and a down-regulation of Lz expression in the developing eye. The loss of lz-dependent cells can be rescued by overexpressing lz via a GMR-lz transgene. We provide additional data showing that factors functioning upstream of Ttk69 in eye development regulate lz in a Ttk69-dependent manner. Conclusions: Our results lead us to conclude that Ttk69 can either directly or indirectly repress lz gene expression to prevent the premature development of R7 precursor cells in the developing eye of Drosophila. We therefore define a mechanism for the tight regulatory control of the master pre-patterning gene, lz, in early Drosophila eye development and provide insight into how differential levels of lz expression can be achieved to effect specific cell fate outcomes

    Rbf Regulates Drosophila Spermatogenesis via Control of Somatic Stem and Progenitor Cell Fate in the Larval Testis

    Get PDF
    The Drosophila testis has been fundamental to understanding how stem cells interact with their endogenous microenvironment, or niche, to control organ growth in vivo. Here, we report the identification of two independent alleles for the highly conserved tumor suppressor gene, Retinoblastoma-family protein (Rbf), in a screen for testis phenotypes in X chromosome third-instar lethal alleles. Rbf mutant alleles exhibit overproliferation of spermatogonial cells, which is phenocopied by the molecularly characterized Rbf11 null allele. We demonstrate that Rbf promotes cell-cycle exit and differentiation of the somatic and germline stem cells of the testes. Intriguingly, depletion of Rbf specifically in the germline does not disrupt stem cell differentiation, rather Rbf loss of function in the somatic lineage drives overproliferation and differentiation defects in both lineages. Together our observations suggest that Rbf in the somatic lineage controls germline stem cell renewal and differentiation non-autonomously via essential roles in the microenvironment of the germline lineage

    Differential Roles of HOW in Male and Female Drosophila Germline Differentiation

    Get PDF
    The adult gonads in both male and female Drosophila melanogaster produce gametes that originate from a regenerative pool of germline stem cells (GSCs). The differentiation programme that produces gametes must be co-ordinated with GSC maintenance and proliferation in order to regulate tissue regeneration. The HOW RNA-binding protein has been shown to maintain mitotic progression of male GSCs and their daughters by maintenance of Cyclin B expression as well as suppressing accumulation of the differentiation factor Bam. Loss of HOW function in the male germline results in loss of GSCs due to a delay in G2 and subsequent apoptosis. Here we show that female how mutant GSCs do not have any cell cycle defects although HOW continues to bind bam mRNA and suppress Bam expression. The role of HOW in suppressing germ cell Bam expression appears to be conserved between sexes, leading to different cellular outcomes in how mutants due to the different functions of Bam. In addition the role in maintaining Cyclin B expression has not been conserved so female how GSCs differentiate rather than arrest

    D-Cbl, the Drosophila homologue of the c-Cbl proto-oncogene, interacts with the Drosophila EGF receptor in vivo, despite lacking C-terminal adaptor binding sites

    No full text
    Β© 1997 Nature Publishing Group. Publisher's version is restricted access in accordance with the Nature Publishing Group policy.The c-Cbl proto-oncogene encodes a multidomain phosphoprotein that has been demonstrated to interact with a wide range of signalling proteins. The biochemical function of c-Cbl in these complexes is, however, unclear. Recent studies with the C. elegans Cbl homologue, sli-1, have suggested that Cbl proteins may act as negative regulators of EGF receptor (EGFR) signalling. As the EGFR and other protein tyrosine kinase receptor signalling pathways are highly conserved between insects and vertebrates, we sought a Drosophila homologue of c- Cbl for a detailed genetic analysis. We report here that Drosophila melanogaster has a single gene, D-cbl, that is homologous to c-cbl. We find that D-cbl encodes a 52 kDa protein that has a high degree of similarity to c- Cbl and SLI-1 across novel phosphotyrosine-binding (PTB) and RING finger domains. Surprisingly, however, D-Cbl is C-terminally truncated relative to c-Cbl and SLI-1 and consequently is unable to bind SH3-domain containing adaptor proteins, including the Drosophila Grb2 homologue, Drk. Although the D-Cbl protein lacks Drk binding sites it can nevertheless associate with a tyrosine phosphorylated protein, or is itself tyrosine phosphorylated in an DER dependent manner and associates with activated Drosophila EGF receptors (DER) in vivo. Consistent with a role for D-Cbl in DER dependent patterning in the embryo and adult, D- Cbl is expressed at a high level in early embryos and throughout the imaginal discs in third instar larvae. This study forms the basis for future genetic analysis of D- Cbl, aimed at gaining insights into the role of Cbl proteins in signal transduction

    The Musashi family of RNA binding proteins: master regulators of multiple stem cell populations

    No full text
    In order to maintain their unlimited capacity to divide, stem cells require controlled temporal and spatial protein expression. The Musashi family of RNA-binding proteins have been shown to exhibit this necessary translational control through both repression and activation in order to regulate multiple stem cell populations. This chapter looks in depth at the initial discovery and characterisation of Musashi in the model organism Drosophila, and its subsequent emergence as a master regulator in a number of stem cell populations. Furthermore the unique roles for mammalian Musashi-1 and Musashi-2 in different stem cell types are correlated with the perceived diagnostic power of Musashi expression in specific stem cell derived oncologies. In particular the potential role for Musashi in the identification and treatment of human cancer is considered, with a focus on the role of Musashi-2 in leukaemia. Finally, the manipulation of Musashi expression is proposed as a potential avenue towards the targeted treatment of specific aggressive stem cell cancers
    • …
    corecore