18 research outputs found

    Schoolchildren in the Principality of Liechtenstein are mildly iodine deficient

    Get PDF
    Abstract Objective To investigate the iodine status of schoolchildren in the Principality of Liechtenstein. Design A representative, cross-sectional principality-wide screening of iodine level in household salt and urinary iodine concentrations (UIC) in primary-school children. Data were compared with the WHO criteria and with 2009 iodine survey data from Switzerland, a neighbouring country that supplies most of the salt used in Liechtenstein. Settings Principality of Liechtenstein. Subjects Schoolchildren (n 228) aged 6-12 years from five different primary schools representing 11·4 % of the children at this age. Results The median UIC was 96 (range: 10-446) ÎŒg/l; 11 %, 56 % and 1 % of children had a UIC 300 ÎŒg/l, respectively. In all, 79 % of households were using adequately iodised salt (≄15 ppm). The median UIC was 20 % lower than that in children at comparable age in Switzerland (120 ÎŒg/l; P < 0·05). Conclusions According to the WHO criteria, schoolchildren in Liechtenstein are mildly iodine deficient and household iodised salt coverage is inadequate. Public health measures to increase iodine intakes in the Principality should be considere

    Multimineral nutritional supplements in a nano-CaO matrix

    Get PDF
    The fast dissolution of certain calcium-containing compounds makes them attractive carriers for trace minerals in nutritional applications, e.g., iron and zinc to alleviate mineral deficiencies in affected people. Here, CaO-based nanostructured mixed oxides containing nutritionally relevant amounts of Fe, Zn, Cu, and Mn were produced by one-step flame spray pyrolysis. The compounds were characterized by nitrogen adsorption, x-ray diffraction, (scanning) transmission electron microscopy, and thermogravimetric analysis. Dissolution in dilute acid (i.d.a.) was measured as an indicator of their in vivo bioavailability. High contents of calcium resulted in matrix encapsulation of iron and zinc preventing formation of poorly soluble oxides. For 3.6 ≀ Ca:Fe ≀ 10.8, Ca2Fe2O5 coexisted with CaO. For Ca/Zn compounds, no mixed oxides were obtained, indicating that the Ca/Zn composition can be tuned without affecting their solubility i.d.a. Aging under ambient conditions up to 225 days transformed CaO to CaCO3 without affecting iron solubility i.d.a. Furthermore, Cu and Mn could be readily incorporated in the nanostructured CaO matrix. All such compounds dissolved rapidly and completely i.d.a., suggesting good in vivo bioavailabilit

    Porous coatings to control release rates of essential oils to generate an atmosphere with botanical actives

    Get PDF
    Essential oils have been used in diverse areas such as packaging, agriculture and cosmetics, for their antimicrobial and pesticide activity. The organic volatile compounds of the essential oils are involved in its activity. Controlling their release helps to prolong their functionality. In this study, a functionalized calcium carbonate porous coating was employed to control the release of thyme and rosemary oil in a confined space. The release rate was evaluated at 7 °C and 23 °C, gravimetrically. It was shown that the capillary effect of the porous coating slowed down the release of the volatiles into the headspace compared to the bulk essential oil. A linear drive force model was used to fit the obtained data from both essential oils. The model showed that rosemary reached the asymptotic mass loss equilibrium faster than thyme. This result can be explained by the diverse composition and concentration of monoterpenoids between the two essential oils. Temperature and degree of loading also played important roles in the desorption of the essential oils. It was observed that at high degrees of loading and temperatures the desorption of essential oils was higher. The above-described technology could be used for applications related to food preservation, pest control among others

    Dissolution and storage stability of nanostructured calcium carbonates and phosphates for nutrition

    No full text
    Rapid calcium (Ca) dissolution from nanostructured Ca phosphate and carbonate (CaCO3) powders may allow them to be absorbed in much higher fraction in humans. Nanosized Ca phosphate and CaCO3 made by flame-assisted spray pyrolysis were characterized by nitrogen adsorption, X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy. As-prepared nanopowders contained both CaCO3 and CaO, but storing them under ambient conditions over 130 days resulted in a complete transformation into CaCO3, with an increase in both crystal and particle sizes. The small particle size could be stabilized against such aging by cation (Mg, Zn, Sr) and anion (P) doping, with P and Mg being most effective. Calcium phosphate nanopowders made at Ca:P ≀ .5 were XRD amorphous and contained Îł-Ca2P2O7 with increasing hydroxyapatite content at higher Ca:P. Aging of powders with Ca:P = 1.0 and 1.5 for over 500 days gradually increased particle size (but less than for CaCO3) without a change in phase composition or crystallinity. In 0.01 M H3PO4 calcium phosphate nanopowders dissolved ≈4 times more Ca than micronsized compounds and about twice more Ca than CaCO3 nanopowders, confirming that nanosizing and/or amorphous structuring sharply increases Ca powder dissolution. Because higher Ca solubility in vitro generally leads to greater absorption in vivo, these novel FASP-made Ca nanostructured compounds may prove useful for nutrition applications, including supplementation and/or food fortification.ISSN:1388-0764ISSN:1572-896

    Nano- and Pheroid technologies for development of foliar iron fertilizers and iron biofortification of soybean grown in South Africa

    No full text
    Abstract Background Foliar iron (Fe) fertilization of crops may increase Fe concentrations in edible portions of plants and improve yield in soils with low available Fe. However, the role of foliar Fe fertilization in increasing seed Fe has not been studied in soybeans (Glycine max). In this study, the PheroidÂź nutrient delivery technology was combined with FeSO4 or nanostructured FePO4 to develop potential new Fe foliar fertilizers. Eight different treatments including different combinations of FeSO4 and Pheroids were foliarly applied on field-grown soybeans in Northern Cape province in South Africa to investigate their influence on seed nutrient composition and yield. Results Confocal and optical microscopy images indicate that FeSO4 or FePO4 was not entrapped in the Pheroids but formed separate precipitates. The average seed Fe of the non-treated plants was 56 ± 3 mg kg−1, and none of the treatments (including the positive controls, FeSO4 and FeSO4 with citrate) significantly increased seed Fe over the control. There was also no significant change in yield or seed Zn, P, protein, or phytic acid. Thus, Pheroids as well as FeSO4 are not suitable as delivery system for Fe to soybean seeds due to Pheroid incompatibility with FeSO4 and poor dispersibility of FePO4. Conclusions Because none of the Fe treatments (including positive controls) affected seed Fe concentrations, foliar Fe application may not be effective to increase seed Fe in crops such as soybean that already have high native Fe

    Proton-Promoted Iron Dissolution from Nanoparticles and the Influence by the Local Iron Environment

    No full text
    Nanostructured iron-containing compounds are promising for food fortification and supplementation to alleviate iron deficiency due to their fast dissolution in dilute acid and high dietary iron bioavailability. Furthermore, when such compounds are encapsulated in a nano-CaO matrix, their dissolution rate is increased. Here the relation between that rate and iron structure (amorphous/crystalline Fe<sub>2</sub>O<sub>3</sub>, crystalline Ca<sub>2</sub>Fe<sub>2</sub>O<sub>5</sub>, or monomeric Fe<sup>3+</sup> inside CaO) is investigated. We used X-ray diffraction (XRD) and electron paramagnetic resonance (EPR) spectroscopy as complementary techniques to study the local iron environment in Ca/Fe oxides as a function of nanoparticle composition. Nanostructured mixed Ca/Fe oxide-containing powders were prepared by flame spray pyrolysis, and their dissolution over time in acidic solutions (pH 1 and 3) was monitored by EPR spectroscopy. Three types of Fe were distinguished in these as-prepared powders: monomeric Fe<sup>3+</sup> and crystalline Ca<sub>2</sub>Fe<sub>2</sub>O<sub>5</sub> at low Fe content powders (Ca:Fe ≄ 3.6) and amorphous/crystalline Fe<sub>2</sub>O<sub>3</sub> at Ca:Fe ≀ 0.7. During dissolution, monomeric Fe<sup>3+</sup> and crystalline Ca<sub>2</sub>Fe<sub>2</sub>O<sub>5</sub> dissolved rapidly (<1 min), while crystalline Fe<sub>2</sub>O<sub>3</sub> was more stable and only slowly released Fe<sup>3+</sup> even at pH 1. The Fe release is discussed within a thermodynamic model based on the nanoparticle lattice energy for each of the nanocrystalline phases, revealing that Fe coordination and lattice dynamics play a more dominant role than particle size. Thus, we demonstrate that control of crystalline structure rather than “nanosizing” may be a prerequisite for rapid dissolution of ferric iron from nanoparticles

    Chemical composition but not specific surface area affects calcium retention of nanostructured calcium compounds in growing rats

    Full text link
    Background: Low dietary calcium intake and bioavailability may adversely affect bone health. Reducing the size of calcium compounds increases their specific surface area (SSA, expressed as m2/g) and may increase calcium dissolution and bioavailability. Objective: We investigated the influence of SSA and chemical composition on the bioavailability of calcium and compared in vitro calcium dissolution with in vivo absorption. Methods: Calcium dissolution was measured in 0.1 M phosphoric acid, whereas color and pH changes of foods were assessed as indicators for potential sensory performance. Calcium absorption, retention, and fractional retention were measured over a 5-d balance study in growing Sprague-Dawley male rats after 21 d of feeding. Femoral and vertebral bone mineral density (BMD) and extensive tissue histology were assessed at study end. The influence of SSA on calcium bioavailability was assessed by comparing the groups fed pure calcium carbonate (CaCO3) with increasing SSAs of 3, 36, and 64 m2/g (CaCO3_3, CaCO3_36 and CaCO3_64), whereas chemical composition was assessed by comparing the smallest CaCO3_64, a 50:50 wt:wt percent solution mixture of CaCO3 and hydroxyapatite_94, and pure hydroxyapatite_100. Results: In vivo, fractional calcium retention from hydroxyapatite_100 (mean ± SEM: 54.86% ± 0.95%/5 d) was significantly greater than from CaCO3_64 (49.66% ± 1.15%/5 d) (P = 0.044). Increasing SSA of the pure CaCO3 did not significantly improve calcium retention. Across all 5 groups, there were no significant differences in BMD or tissue calcification by histology. In vitro calcium dissolution did not correlate with SSA or calcium absorption. In selected food matrixes, hydroxyapatite_100 caused less color change and/or smaller pH increase than did the other calcium compounds. Conclusions: Our findings suggest that chemical composition rather than SSA is a predictor of nanostructured calcium bioavailability and that in vitro dissolution of nanostructured calcium does not predict in vivo absorption. Although its phosphorus content may limit use in some populations, nanostructured hydroxyapatite may be a promising calcium compound for food fortification
    corecore