606 research outputs found

    Ehe als Lebensform von Liebe

    Get PDF

    Deliberate control over facial expressions in motherhood. Evidence from a Stroop-like task.

    Get PDF
    The deliberate control of facial expressions is an important ability in human interactions, in particular for mothers with prelinguistic infants. Because research on this topic is still scarce, we investigated the control over facial expressions in a Stroop-like paradigm. Mothers of 2-6 months old infants and nullipara women produced smiles and frowns in response to verbal commands written on distractor faces of adults or infants showing expressions of happiness or anger/distress. Analyses of video recordings with a machine classifier for facial expression revealed pronounced effects of congruency between the expressions required by the participants and those displayed by the face stimuli on the onset latencies of the deliberate facial expressions. With adult distractor faces this Stroop effect was similar whether participants smiled or frowned. With infant distractor faces mothers and non-mothers showed indistinguishable Stroop effects on smile responses; however, for frown responses, the Stroop effect in mothers was smaller than in non-mothers. We suggest that for frown responses in mothers when facing infants, the effect of mimicry or stimulus response compatibility, leading to the Stroop effect, is offset by a caregiving response or empathy

    Can BioSAXS detect ultrastructural changes of antifungal compounds in Candida albicans?–an exploratory study

    Get PDF
    The opportunistic yeast Candida albicans is the most common cause of candidiasis. With only four classes of antifungal drugs on the market, resistance is becoming a problem in the treatment of fungal infections, especially in immunocompromised patients. The development of novel antifungal drugs with different modes of action is urgent. In 2016, we developed a groundbreaking new medium-throughput method to distinguish the effects of antibacterial agents. Using small-angle X-ray scattering for biological samples (BioSAXS), it is now possible to screen hundreds of new antibacterial compounds and select those with the highest probability for a novel mode of action. However, yeast (eukaryotic) cells are highly structured compared to bacteria. The fundamental question to answer was if the ultrastructural changes induced by the action of an antifungal drug can be detected even when most structures in the cell stay unchanged. In this exploratory work, BioSAXS was used to measure the ultrastructural changes of C. albicans that were directly or indirectly induced by antifungal compounds. For this, the well-characterized antifungal drug Flucytosine was used. BioSAXS measurements were performed on the synchrotron P12 BioSAXS beamline, EMBL (DESY, Hamburg) on treated and untreated yeast C. albicans. BioSAXS curves were analysed using principal component analysis (PCA). The PCA showed that Flucytosine-treated and untreated yeast were separated. Based on that success further measurements were performed on five antifungal peptides {1. Cecropin A-melittin hybrid [CA (1–7) M (2–9)], KWKLFKKIGAVLKVL; 2. Lasioglossin LL-III, VNWKKILGKIIKVVK; 3. Mastoparan M, INLKAIAALAKKLL; 4. Bmkn2, FIGAIARLLSKIFGKR; and 5. optP7, KRRVRWIIW}. The ultrastructural changes of C. albicans indicate that the peptides may have different modes of action compared to Flucytosine as well as to each other, except for the Cecropin A-melittin hybrid [CA (1–7) M (2–9)] and optP7, showing very similar effects on C. albicans. This very first study demonstrates that BioSAXS shows promise to be used for antifungal drug development. However, this first study has limitations and further experiments are necessary to establish this application

    Vector Meson Photoproduction with an Effective Lagrangian in the Quark Model

    Full text link
    A quark model approach to the photoproduction of vector mesons off nucleons is proposed. Its starting point is an effective Lagrangian of the interaction between the vector meson and the quarks inside the baryon, which generates the non-diffractive s- and u- channel resonance contributions. Additional t-channel π0\pi^0 and σ\sigma exchanges are included for the ω\omega and ρ0\rho^0 production respectively to account for the large diffractive behavior in the small tt region as suggested by Friman and Soyeur. The numerical results are presented for the ω\omega and ρ\rho productions in four isospin channels with the same set of parameters, and they are in good agreement with the available data not only in ω\omega and ρ0\rho^0 productions but also in the charged ρ\rho productions where the additional t-channel σ\sigma exchange does not contribute so that it provides an important test to this approach. The investigation is also extended to the ϕ\phi photoproduction, and the initial results show that the non-diffractive behavior of the ϕ\phi productions in the large tt region can be described by the s- and u- channel contributions with significantly smaller coupling constants, which is consistent with the findings in the similar studies in the QHD framework. The numerical investigation has also shown that polarization observables are essential for identifying so-called "missing resonances".Comment: 36 pages, 10 PS figures, extended version of nucl-th/9711061 and nucl-th/9803021, submitted to PR

    Umweltgerechte Prozessführung und Zustandserkennung in Chemieanlagen mit neuronalen Netzen - Teilvorhaben 2: Konzipierung und Erprobung des Zustandserkennungsverfahrens

    Get PDF
    Im Rahmen des Teilvorhabens wurde ein Online-Monitoring-System für stark exotherme Reaktionen entwickelt, das das Bedienungspersonal bei der optimalen und umweltgerechten Prozessführung von komplexen oder sicherheitstechnisch schwierigen Semibatch-Prozessen in Rührkesselreaktoren (Batch-Reaktoren) unterstützen soll. Das Monitoring-System (MoSys) basiert auf dimensionslosen Stoff- und Wärmebilanzen mit adaptiven Komponenten. MoSys muss zuerst mit den Prozessdaten von normalen und unerwünschten Batch-Verläufen angelernt werden, die im Miniplant unter den Bedingungen des Industrieprozesses durchgeführt wurden. Die Adaption der Bilanzmodelle an die Zielanlage erfolgt durch zweischichtige Perceptron-Netze. Um eine vollständige Maßstabsübertragung zu gewährleisten, sollte MoSys mit Prozessdaten von mindestens einem normalen Batch-Verlauf in der Chemieanlage angepasst und validiert werden. MoSys wurde sowohl für eine homogene exotherme Veresterungsreaktion als auch für einen komplexen heterogenen exothermen Hydrierprozess konzipiert. Experimentelle Tests wurden für die Veresterung in einer Pilotanlage und für die Hydrierung in einer industriellen Chemieanlage durchgeführt. Zur Industrieerprobung wurde MoSys in ein Batch-Informations-Management-System (BIMS) integriert, das auch entwickelt und in das Prozessleitsystem (PLS) einer Mehrzweckanlage im Feinchemie-Werk Radebeul (Degussa AG) implementiert wurde. Dadurch konnten die MoSys-Ausgaben simultan mit wichtigen Prozesssignalen auf den Terminals des PLS visualisiert werden. Zum Beispiel werden der Hydrierungsfortschritt, das vorhergesagte Reaktionsende und die Konzentrationsverläufe des Edukts, Zwischenprodukts und Produkts auf den Terminals der Operatorstationen angezeigt. Wenn unerwünschte Betriebszustände auftreten, wird das Bedienungspersonal frühzeitig alarmiert und Anweisungen für Gegenmaßnahmen, die nur vom Operator ausgeführt werden dürfen, werden auf den Terminals angezeigt. Die Leistungsfähigkeit von MoSys/BIMS konnte während zweier Hydrierungs-Produktionskampagnen nachgewiesen werden

    Correct quantum chemistry in a minimal basis from effective Hamiltonians

    Get PDF
    We describe how to create ab-initio effective Hamiltonians that qualitatively describe correct chemistry even when used with a minimal basis. The Hamiltonians are obtained by folding correlation down from a large parent basis into a small, or minimal, target basis, using the machinery of canonical transformations. We demonstrate the quality of these effective Hamiltonians to correctly capture a wide range of excited states in water, nitrogen, and ethylene, and to describe ground and excited state bond-breaking in nitrogen and the chromium dimer, all in small or minimal basis sets

    Adjuvant radiotherapy and local recurrence in vulvar cancer:a subset analysis of the AGO-CaRE-1 study

    Get PDF
    Background: The impact of adjuvant radiotherapy (RT) to the vulva with regard to prognosis and local recurrence in patients with vulvar squamous cell cancer (VSCC) is poorly described. Patients and methods: In the AGO-CaRE-1 study 1618 patients with primary VSCC FIGO stage ≥ IB, treated between 1998-2008, were documented. In this retrospective subanalysis, 360 patients were included based on the following criteria: nodal involvement (pN+), known RT treatment and known radiation fields. Results: The majority had pT1b/pT2 tumors (n=299; 83.1%). In 76.7%, R0 resection was achieved. 57/360 (15.8%) N+ patients were treated with adjuvant RT to the groins/pelvis and 146/360 (40.5%) received adjuvant RT to the vulva and groins/pelvis. 157/360 (43.6%) patients did not receive any adjuvant RT. HPV status was available in 162/360 patients (45.0%), 75/162 tumors were HPV+(46.3%), 87/162 (53.7%) HPV-. During a median follow-up of 17.2 months, recurrence at the vulva only occurred in 25.5% of patients without adjuvant RT, in 22.8% of patients with adjuvant RT to groins/pelvis and in 15.8% of patients with adjuvant RT to the vulva and groins/pelvis respectively. The risk reducing effect of local RT was independent of the resection margin status. 50% disease free survival time (50% DFST) indicated a stronger impact of adjuvant RT to the vulva in HPV+ compared to HPV- patients (50% DFST 20.7 months vs. 17.8 months). Conclusion: Adjuvant RT to the vulva was associated with a lower risk for local recurrence in N+ VSCC independent of the resection margin status. This observation was more pronounced in patients with HPV+ tumors in comparison to HPV– tumors

    Can BioSAXS detect ultrastructural changes of antifungal compounds in Candida albicans?–an exploratory study

    Get PDF
    The opportunistic yeast Candida albicans is the most common cause of candidiasis. With only four classes of antifungal drugs on the market, resistance is becoming a problem in the treatment of fungal infections, especially in immunocompromised patients. The development of novel antifungal drugs with different modes of action is urgent. In 2016, we developed a groundbreaking new medium-throughput method to distinguish the effects of antibacterial agents. Using small-angle X-ray scattering for biological samples (BioSAXS), it is now possible to screen hundreds of new antibacterial compounds and select those with the highest probability for a novel mode of action. However, yeast (eukaryotic) cells are highly structured compared to bacteria. The fundamental question to answer was if the ultrastructural changes induced by the action of an antifungal drug can be detected even when most structures in the cell stay unchanged. In this exploratory work, BioSAXS was used to measure the ultrastructural changes of C. albicans that were directly or indirectly induced by antifungal compounds. For this, the well-characterized antifungal drug Flucytosine was used. BioSAXS measurements were performed on the synchrotron P12 BioSAXS beamline, EMBL (DESY, Hamburg) on treated and untreated yeast C. albicans. BioSAXS curves were analysed using principal component analysis (PCA). The PCA showed that Flucytosine-treated and untreated yeast were separated. Based on that success further measurements were performed on five antifungal peptides {1. Cecropin A-melittin hybrid [CA (1–7) M (2–9)], KWKLFKKIGAVLKVL; 2. Lasioglossin LL-III, VNWKKILGKIIKVVK; 3. Mastoparan M, INLKAIAALAKKLL; 4. Bmkn2, FIGAIARLLSKIFGKR; and 5. optP7, KRRVRWIIW}. The ultrastructural changes of C. albicans indicate that the peptides may have different modes of action compared to Flucytosine as well as to each other, except for the Cecropin A-melittin hybrid [CA (1–7) M (2–9)] and optP7, showing very similar effects on C. albicans. This very first study demonstrates that BioSAXS shows promise to be used for antifungal drug development. However, this first study has limitations and further experiments are necessary to establish this application
    corecore