90 research outputs found

    Parallel attentional facilitation of features and objects in early visual cortex

    Get PDF
    ACKNOWLEDGMENTS This work was supported by a stipend from the Deutsche Forschungsgemeinschaft (AN 841/1‐1) and a grant from the BBSRC (BB/P002404/1) to S.K.A. We thank Jennifer Padwal for help with data collection and Matt Marlow for technical support.Peer reviewedPublisher PD

    Attentional selection of feature conjunctions is accomplished by parallel and independent selection of single features

    Get PDF
    Date of Acceptance: 31/05/2015 This work was supported by Deutsche Forschungsgemeinschaft (AN 841/1-1, MU 972/20-1). We thank Renate Zahn and Norman Forschack for help with data collection. The authors declare no competing financial interestsPeer reviewedPublisher PD

    Electrophysiological Correlates of Visual Singleton Detection

    Get PDF
    Identifying a fixed-feature singleton that pops out from an otherwise uniform array of distractors elicits an event-related potential (ERP) component called the N2pc over the posterior scalp. The N2pc has been used to track attention with millisecond accuracy, inform theories of visual selection, and test for specific attention deficits in clinical populations, yet it is still unclear what neuro-cognitive process gives rise to the component. One hypothesis is that the N2pc reflects a spatial filtering process that suppresses irrelevant distractors. In support of this hypothesis, Luck and Hillyard (1994) showed that the N2pc is eliminated when the features of the target and distractors switch unpredictably across trials so that participants cannot prepare to filter out irrelevant items. The present study aimed to replicate Luck and Hillyard’s singleton detection experiment, but with modifications to enhance the N2pc signal and to gain statistical power. We show that orientation singletons do, in fact, elicit the N2pc as well as an earlier-onsetting and longer-lasting singleton detection positivity (SDP) over the occipital scalp when the target and distractor orientations swap randomly across trials. We conclude that spatial filtering might not play a major role in the generation of the N2pc and that the selection processes required to search for fixed-feature targets (in feature-search mode) are also engaged in the detection of variable-feature singletons (in singleton-detection mode)

    Impaired Motion Processing in Schizophrenia and the Attenuated Psychosis Syndrome : Etiological and Clinical Implications

    Get PDF
    The authors thank Gail Silipo, M.A. for assistance in subject recruitment, Raj Sangoi (RT)(R)(MR) and Caxia Hu, M.S., for assistance in MRI scanning and Isabel and Herb Stusser for their generous support. This research was supported by NIMH grant MH084031 (MJH) DA03383 (DCJ).Peer reviewedPostprin

    Isolating the Neural Substrates of Visually Guided Attention Orienting in Humans

    Get PDF
    The neural processes that enable healthy humans to orient attention to sudden visual events are poorly understood because they are tightly intertwined with purely sensory processes. Here we isolated visually guided orienting activity from sensory activity using event-related potentials (ERPs). By recording ERPs to a lateral stimulus and comparing waveforms obtained under conditions of attention and inattention, we identified an early positive deflection over the ipsilateral visual cortex that was associated with the covert orienting of visual attention to the stimulus. Across five experiments with male and female adults participants, this ipsilateral visual orienting activity (VOA) could be distinguished from purely sensory-evoked activity and from other top-down spatial attention effects. The VOA was linked with behavioral measures of orienting, being significantly larger when the stimulus was detected rapidly than when it was detected more slowly, and its presence was independent of saccadic eye movements towards the targets. The VOA appears to be a specific neural index of the visually guided orienting of attention to a stimulus that appears abruptly in an otherwise uncluttered visual field

    Neural mechanisms of divided feature-selective attention to colour

    Get PDF
    The work was partly supported by an Experimental Psychology Society summer studentship to Karol Puch under the supervision of JM.Peer reviewedPostprin

    Effects of dried distillers grains with solubles on sow carcass fat quality

    Get PDF
    A pilot experiment was conducted to determine the effects of feeding nonpregnant (open) sows a diet containing 50% dried distillers grains with solubles (DDGS) on growth and carcass fat quality. A total of 8 open sows were allotted to 1 of 2 diets by parity and BW. One diet was a standard corn-soybean meal-based gestation diet; the second diet was a corn-soybean meal-based diet that contained 50% DDGS. All sows were fed 5 lb/d of feed in a single feeding for 92 d. All sows were harvested on d 92 at the Kansas State University Meat Laboratory for determination of carcass fat quality. As expected, no differences in BW or backfat change were found (P \u3e 0.62) for the feeding period. Additionally, no differences (P \u3e 0.23) in lipid oxidation as measured by 2-thiobarbituric acid reactive substances (TBARS) assay were reported either initially or after 5 d of retail display for sows fed 50% DDGS compared with controls. Lipid oxidation increased (P \u3c 0.003) as measured by TBARS assay for both treatments from d 1 to 5 as expected. Jowl fatty acid analysis revealed an increase in linoleic acid (P \u3c 0.01), total polyunsaturated fatty acids (P \u3c 0.01), and the ratio of polyunsaturated fatty acids to saturated fatty acids (P \u3c 0.03). Also, there was a trend for increased jowl iodine value (P \u3c 0.08) for sows fed 50% DDGS compared with the controls. In summary, feeding 50% DDGS to open sows for 92 d did not significantly affect BW, backfat, and lipid oxidation compared with controls. However, feeding 50% DDGS increased the concentration of linoleic acid and total polyunsaturated fatty acids and tended to increase jowl iodine value compared with controls.; Swine Day, 2008, Kansas State University, Manhattan, KS, 200

    Split-Brain: what we know now and why this is important for understanding consciousness

    Get PDF
    Recently, the discussion regarding the consequences of cutting the corpus callosum (“split-brain”) has regained momentum (Corballis, Corballis, Berlucchi, & Marzi, 2018; Pinto et al., 2017; Pinto, Lamme, & de Haan, 2017; Volz & Gazzaniga, 2017; Volz, Hillyard, Miller, & Gazzaniga, 2018). This collective review paper aims to summarize the empirical common ground, to delineate the different interpretations, and to identify the remaining questions. In short, callosotomy leads to a broad breakdown of functional integration ranging from perception to attention. However, the breakdown is not absolute as several processes, such as action control, seem to remain unified. Disagreement exists about the responsible mechanisms for this remaining unity. The main issue concerns the first-person perspective of a split-brain patient. Does a split-brain harbor a split consciousness or is consciousness unified? The current consensus is that the body of evidence is insufficient to answer this question, and different suggestions are made to how future studies might address this paucity. In addition, it is suggested that the answers might not be a simple yes or no but that intermediate conceptualization need to be considered

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore