79 research outputs found

    Autocatalytic Processing of the 223-kDa Protein of Blueberry Scorch Carlavirus by a Papain-like Proteinase

    No full text
    AbstractThe first open reading frame of the blueberry scorch carlavirus (BBScV) genome encodes a putative replication-associated protein of 223 kDa (p223). A pulse-chase analysis of viral RNA translated in vitro in rabbit reticulocyte lysate revealed that p223 was proteolytically processed. Using a full-length ORF 1 cDNA clone in a coupled in vitro transcription/translation reaction, we confirmed that the ORF 1 gene product of BBScV processes autocatalytically. From sequence alignments with phylogenetically related viruses, including tymoviruses, we predicted that p223 contained a papain-like proteinase domain with a putative catalytic cysteine994 and histidine1075. A second possible proteinase domain, which contained cysteine895 and histidine984 residues with similar spacing but was otherwise less similar to the viral papain-like proteinases, was identified immediately upstream of the predicted catalytic site. The cleavage site of the proteinase was predicted to be between the putative hellcase and the polymerase domains, possibly between or close to glycine1472 and alanine1473. Supporting these predictions, deletion of the 2091 nucleotides encoding the C-terminal region of p223, which contained the putative RNA polymerase domain and the putative cleavage site of the polyprotein, abolished autoproteolysis. Deletion of the 2061 nucleotides encoding the N-terminal region, which contained the putative methyltransferase domain, did not affect autoproteolysis. Alteration of cysteine994, histidine1075, or glycine1472 abolished autoproteolysis in vitro , supporting the involvement of these residues at the catalytic site and cleavage site. Alteration of the upstream cysteine895 and histidine984 residues did not affect processing in vitro. Capped BBScV full-length transcripts containing mutations in the codons for either cysteine994 or histidine1075 were not infectious in the systemic host plants Chenopodium quinoa and C. amaranticolor, whereas alteration of glycine1472 significantly decreased but did not abolish infectivity. Transcripts containing mutations in the codons for either cysteine895 or histidine984 also were infectious, but resulted in delayed symptom expression in plants

    Use of the tetrazolium salt MTT to measure cell viability effects of the bacterial antagonist Lysobacter enzymogenes on the filamentous fungus Cryphonectria parasitica

    Get PDF
    Despite substantial interest investigating bacterial mechanisms of fungal growth inhibition, there are few methods available that quantify fungal cell death during direct interactions with bacteria. Here we describe an in vitro cell suspension assay using the tetrazolium salt MTT as a viability stain to assess direct effects of the bacterial antagonist Lysobacter enzymogenes on hyphal cells of the filamentous fungus Cryphonectria parasitica. The effects of bacterial cell density, fungal age and the physiological state of fungal mycelia on fungal cell viability were evaluated. As expected, increased bacterial cell density correlated with reduced fungal cell viability over time. Bacterial effects on fungal cell viability were influenced by both age and physiological state of the fungal mycelium. Cells obtained from 1-week-old mycelia lost viability faster compared with those from 2-week-old mycelia. Likewise, hyphal cells obtained from the lower layer of the mycelial pellicle lost viability more quickly compared with cells from the upper layer of the mycelial pellicle. Fungal cell viability was compared between interactions with L. enzymogenes wildtype strain C3 and a mutant strain, DCA, which was previously demonstrated to lack in vitro antifungal activity. Addition of antibiotics eliminated contributions to MTT-formazan production by bacterial cells, but not by fungal cells, demonstrating that mutant strain DCA had lost complete capacity to reduce fungal cell viability. These results indicate this cell suspension assay can be used to quantify bacterial effects on fungal cells, thus providing a reliable method to differentiate strains during bacterial/fungal interactions

    ICTV Virus Taxonomy Profile: Chrysoviridae

    Get PDF
    The Chrysoviridae is a family of small, isometric, non-enveloped viruses (40 nm in diameter) with segmented dsRNA genomes (typically four segments). The genome segments are individually encapsidated and together comprise 11.5–12.8 kbp. The single genus Chrysovirus includes nine species. Chrysoviruses lack an extracellular phase to their life cycle; they are transmitted via intracellular routes within an individual during hyphal growth, in asexual or sexual spores, or between individuals via hyphal anastomosis. There are no known natural vectors for chrysoviruses. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Chrysoviridae, which is available at www.ictv.global/report/chrysoviridae.Peer reviewe

    Identification of an RNA Silencing Suppressor Encoded by a Symptomless Fungal Hypovirus, Cryphonectria Hypovirus 4

    Get PDF
    Previously, we have reported the ability of a symptomless hypovirus Cryphonectria hypovirus 4 (CHV4) of the chestnut blight fungus to facilitate stable infection by a co-infecting mycoreovirus 2 (MyRV2)—likely through the inhibitory effect of CHV4 on RNA silencing (Aulia et al., Virology, 2019). In this study, the N-terminal portion of the CHV4 polyprotein, termed p24, is identified as an autocatalytic protease capable of suppressing host antiviral RNA silencing. Using a bacterial expression system, CHV4 p24 is shown to cleave autocatalytically at the di-glycine peptide (Gly214-Gly215) of the polyprotein through its protease activity. Transgenic expression of CHV4 p24 in Cryphonectria parasitica suppresses the induction of one of the key genes of the antiviral RNA silencing, dicer-like 2, and stabilizes the infection of RNA silencing-susceptible virus MyRV2. This study shows functional similarity between CHV4 p24 and its homolog p29, encoded by the symptomatic prototype hypovirus CHV1

    ICTV Virus Taxonomy Profile: Chrysoviridae

    Get PDF
    Members of the family Chrysoviridae are isometric, non-enveloped viruses with segmented, linear, dsRNA genomes. There are 3–7 genomic segments, each of which is individually encapsidated. Chrysoviruses infect fungi, plants and possibly insects, and may cause hypovirulence in their fungal hosts. Chrysoviruses have no known vectors and lack an extracellular phase to their replication cycle; they are transmitted via intracellular routes within an individual during hyphal growth, in asexual or sexual spores, or between individuals via hyphal anastomosis. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the family Chrysoviridae, which is available at ictv.global/report/chrysoviridae.Peer reviewe

    ICTV Virus Taxonomy Profile: Megabirnaviridae

    Get PDF
    Megabirnaviridae is a family of non-enveloped spherical viruses with dsRNA genomes of two linear segments, each of 7.2-8.9 kbp, comprising 16.1 kbp in total. The genus Megabirnavirus includes the species Rosellinia necatrix megabirnavirus 1, the exemplar isolate of which infects the white root rot fungus (Rosellinia necatrix) to which it confers hypovirulence. Megabirnaviruses are characterized by their bisegmented genome with large 5'-untranslated regions (1.6 kb) upstream of both 5'-proximal coding strand ORFs, and large protrusions on the particle surface. This is a summary of the ICTV Report on the family Megabirnaviridae, which is available at ictv.global/report/megabirnaviridae

    ICTV Virus Taxonomy Profile: \u3cem\u3eChrysoviridae\u3c/em\u3e

    Get PDF
    The Chrysoviridae is a family of small, isometric, non-enveloped viruses (40 nm in diameter) with segmented dsRNA genomes (typically four segments). The genome segments are individually encapsidated and together comprise 11.5–12.8 kbp. The single genus Chrysovirus includes nine species. Chrysoviruses lack an extracellular phase to their life cycle; they are transmitted via intracellular routes within an individual during hyphal growth, in asexual or sexual spores, or between individuals via hyphal anastomosis. There are no known natural vectors for chrysoviruses. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Chrysoviridae, which is available at www.ictv.global/report/chrysoviridae

    ICTV Virus Taxonomy Profile: \u3cem\u3eHypoviridae\u3c/em\u3e

    Get PDF
    The Hypoviridae, comprising one genus, Hypovirus, is a family of capsidless viruses with positive-sense, ssRNA genomes of 9.1–12.7 kb that possess either a single large ORF or two ORFs. The ORFs appear to be translated from genomic RNA by non-canonical mechanisms, i.e. internal ribosome entry site-mediated and stop/restart translation. Hypoviruses have been detected in ascomycetous or basidiomycetous filamentous fungi, and are considered to be replicated in host Golgi-derived, lipid vesicles that contain their dsRNA as a replicative form. Some hypoviruses induce hypovirulence to host fungi, while others do not. This is a summary of the current ICTV report on the taxonomy of the Hypoviridae, which is available at www.ictv.global/report/hypoviridae

    An exploration of ambigrammatic sequences in narnaviruses

    Get PDF
    Narnaviruses have been described as positive-sense RNA viruses with a remarkably simple genome of ~3 kb, encoding only a highly conserved RNA-dependent RNA polymerase (RdRp). Many narnaviruses, however, are 'ambigrammatic' and harbour an additional uninterrupted open reading frame (ORF) covering almost the entire length of the reverse complement strand. No function has been described for this ORF, yet the absence of stops is conserved across diverse narnaviruses, and in every case the codons in the reverse ORF and the RdRp are aligned. The >3 kb ORF overlap on opposite strands, unprecedented among RNA viruses, motivates an exploration of the constraints imposed or alleviated by the codon alignment. Here, we show that only when the codon frames are aligned can all stop codons be eliminated from the reverse strand by synonymous single-nucleotide substitutions in the RdRp gene, suggesting a mechanism for de novo gene creation within a strongly conserved amino-acid sequence. It will be fascinating to explore what implications this coding strategy has for other aspects of narnavirus biology. Beyond narnaviruses, our rapidly expanding catalogue of viral diversity may yet reveal additional examples of this broadly-extensible principle for ambigrammatic-sequence development
    • …
    corecore