3,678 research outputs found

    Anomalously light states in super-Yang-Mills Chern-Simons theory

    Get PDF
    Inspired by our previous finding that supersymmetric Yang-Mills-Chern-Simons (SYM-CS) theory dimensionally reduced to 1+1 dimensions possesses approximate Bogomol'nyi-Prasad-Sommerfield (BPS) states, we study the analogous phenomenon in the three-dimensional theory. Approximate BPS states in two dimensions have masses which are nearly independent of the Yang-Mills coupling and proportional to their average number of partons. These states are a reflection of the exactly massless BPS states of the underlying pure SYM theory. In three dimensions we find that this mechanism leads to anomalously light bound states. While the mass scale is still proportional to the average number of partons times the square of the CS coupling, the average number of partons in these bound states changes with the Yang-Mills coupling. Therefore, the masses of these states are not independent of the coupling. Our numerical calculations are done using supersymmetric discrete light-cone quantization (SDLCQ).Comment: 14 pages, 3 figures, LaTe

    Anomalously light mesons in a (1+1)-dimensional supersymmetric theory with fundamental matter

    Get PDF
    We consider N=1 supersymmetric Yang-Mills theory with fundamental matter in the large-N_c approximation in 1+1 dimensions. We add a Chern-Simons term to give the adjoint partons a mass and solve for the meson bound states. Here mesons are color-singlet states with two partons in the fundamental representation but are not necessarily bosons. We find that this theory has anomalously light meson bound states at intermediate and strong coupling. We also examine the structure functions for these states and find that they prefer to have as many partons as possible at low longitudinal momentum fraction.Comment: 14 pages, 3 figures, LaTe

    Two-dimensional super Yang-Mills theory investigated with improved resolution

    Get PDF
    In earlier work, N=(1,1) super Yang--Mills theory in two dimensions was found to have several interesting properties, though these properties could not be investigated in any detail. In this paper we analyze two of these properties. First, we investigate the spectrum of the theory. We calculate the masses of the low-lying states using the supersymmetric discrete light-cone (SDLCQ) approximation and obtain their continuum values. The spectrum exhibits an interesting distribution of masses, which we discuss along with a toy model for this pattern. We also discuss how the average number of partons grows in the bound states. Second, we determine the number of fermions and bosons in the N=(1,1) and N=(2,2) theories in each symmetry sector as a function of the resolution. Our finding that the numbers of fermions and bosons in each sector are the same is part of the answer to the question of why the SDLCQ approximation exactly preserves supersymmetry.Comment: 20 pages, 10 figures, LaTe

    Simulation of Dimensionally Reduced SYM-Chern-Simons Theory

    Get PDF
    A supersymmetric formulation of a three-dimensional SYM-Chern-Simons theory using light-cone quantization is presented, and the supercharges are calculated in light-cone gauge. The theory is dimensionally reduced by requiring all fields to be independent of the transverse dimension. The result is a non-trivial two-dimensional supersymmetric theory with an adjoint scalar and an adjoint fermion. We perform a numerical simulation of this SYM-Chern-Simons theory in 1+1 dimensions using SDLCQ (Supersymmetric Discrete Light-Cone Quantization). We find that the character of the bound states of this theory is very different from previously considered two-dimensional supersymmetric gauge theories. The low-energy bound states of this theory are very ``QCD-like.'' The wave functions of some of the low mass states have a striking valence structure. We present the valence and sea parton structure functions of these states. In addition, we identify BPS-like states which are almost independent of the coupling. Their masses are proportional to their parton number in the large-coupling limit.Comment: 18pp. 7 figures, uses REVTe

    Towards a SDLCQ test of the Maldacena Conjecture

    Get PDF
    We consider the Maldacena conjecture applied to the near horizon geometry of a D1-brane in the supergravity approximation and present numerical results of a test of the conjecture against the boundary field theory calculation using DLCQ. We previously calculated the two-point function of the stress-energy tensor on the supergravity side; the methods of Gubser, Klebanov, Polyakov, and Witten were used. On the field theory side, we derived an explicit expression for the two-point function in terms of data that may be extracted from the supersymmetric discrete light cone quantization (SDLCQ) calculation at a given harmonic resolution. This yielded a well defined numerical algorithm for computing the two-point function. For the supersymmetric Yang-Mills theory with 16 supercharges that arises in the Maldacena conjecture, the algorithm is perfectly well defined; however, the size of the numerical computation prevented us from obtaining a numerical check of the conjecture. We now present numerical results with approximately 1000 times as many states as we previously considered. These results support the Maldacena conjecture and are within 10−1510-15% of the predicted numerical results in some regions. Our results are still not sufficient to demonstrate convergence, and, therefore, cannot be considered to a numerical proof of the conjecture. We present a method for using a ``flavor'' symmetry to greatly reduce the size of the basis and discuss a numerical method that we use which is particularly well suited for this type of matrix element calculation.Comment: 10 pages, 1 figur

    Simulation-Based Planning of Optimal Conditions for Industrial Computed Tomography

    Get PDF
    We present a method to optimise conditions for industrial computed tomography (CT). This optimisation is based on a deterministic simulation. Our algorithm finds task-specific CT equipment settings to achieve optimal exposure parameters by means of an STL-model of the specimen and a raytracing method. These parameters are positioning and orientation of the specimen, X-ray tube voltage and prefilter thickness
    • 

    corecore