7 research outputs found

    Binary systems and their nuclear explosions

    Get PDF
    Peer ReviewedPreprin

    Pathways to deep decarbonization in Germany

    Get PDF
    The Deep Decarbonization Pathways Project (DDPP) is a collaborative global initiative led by IDDRI and SDSN that aims to demonstrate how individual countries can transition to a low-carbon economy preferably consistent with the internationally agreed target of limiting the increase in global temperature to less than 2°C. Achieving this target will require a profound transformation of energy systems by mid-century, a "deep decarbonization". The project comprises 16 research teams composed of leading institutions from the world's largest GHG emitting countries: Australia, Brazil, Canada, China, France, Germany India, Indonesia, Italy, Japan, Mexico, Russia, South Africa, South Korea, United Kingdom, and United States. Each team is exploring what is required to achieve this transformation in their own country's economy while taking into account socio-economic conditions, development aspirations, infrastructure stocks, natural resource endowments, and other relevant factors. The DDPP country study for Germany explores what is required to achieve deep decarbonization in Germany. It has been conducted by the Wuppertal Institute for Climate, Environment and Energy, with the support of Stiftung Mercator. The study discusses how the German government's target of reducing domestic GHG emissions by 80 to 95% by 2050 (versus 1990) can be reached

    Tetrapodal Diazatriptycene Enforces Orthogonal Orientation in Self-Assembled Monolayers

    No full text
    none17Conformationally rigid multipodal molecules should control the orientation and packing density of functional head groups upon self-assembly on solid supports. Common tripods frequently fail in this regard because of inhomogeneous bonding configuration and stochastic orientation. These issues are circumvented by a suitable tetrapodal diazatriptycene moiety, bearing four thiol-anchoring groups, as demonstrated in the present study. Such molecules form well-defined self-assembled monolayers (SAMs) on Au(111) substrates, whereby the tetrapodal scaffold enforces a nearly upright orientation of the terminal head group with respect to the substrate, with at least three of the four anchoring groups providing thiolate-like covalent attachment to the surface. Functionalization by condensation chemistry allows a large variety of functional head groups to be introduced to the tetrapod, paving the path toward advanced surface engineering and sensor fabrication.NEXUSnoneBenneckendorf, Frank S; Rohnacher, Valentina; Sauter, Eric; Hillebrandt, Sabina; MĂŒnch, Maybritt; Wang, Can; Casalini, Stefano; Ihrig, Katharina; Beck, Sebastian; JĂ€nsch, Daniel; Freudenberg, Jan; Jaegermann, Wolfram; SamorĂŹ, Paolo; Pucci, Annemarie; Bunz, Uwe H F; Zharnikov, Michael; MĂŒllen, KlausBenneckendorf, Frank S; Rohnacher, Valentina; Sauter, Eric; Hillebrandt, Sabina; MĂŒnch, Maybritt; Wang, Can; Casalini, Stefano; Ihrig, Katharina; Beck, Sebastian; JĂ€nsch, Daniel; Freudenberg, Jan; Jaegermann, Wolfram; SamorĂŹ, Paolo; Pucci, Annemarie; Bunz, Uwe H F; Zharnikov, Michael; MĂŒllen, Klau

    Pathways to Deep Decarbonization 2015 report.

    No full text
    Les 16 Ă©quipes de chercheurs mobilisĂ©es dans le cadre du projet ont Ă©laborĂ© et approfondi leurs trajectoires de dĂ©carbonation par rapport au rapport 2014, affinant leurs rĂ©sultats et conclusions par l’intermĂ©diaire de plusieurs scĂ©narios dĂ©finissant diffĂ©rentes orientations possibles de dĂ©carbonation pour un mĂȘme pays.À l’échelle globale, le rapport montre que la dĂ©carbonation profonde des Ă©conomies actuellement les plus Ă©mettrices est techniquement faisable, tout en prenant en compte les projections attendues de croissance dĂ©mographique et Ă©conomique. D’ores et dĂ©jĂ , ces tendances de dĂ©carbonation apparaissent compatibles avec l’objectif de 2°C maximum de rĂ©chauffement Ă  l’horizon 2100 ; et des potentiels de rĂ©duction d’émissions plus drastiques encore ont Ă©tĂ© identifiĂ©s par les diffĂ©rentes Ă©quipes. Ces conclusions pourront en outre, Ă  l’avenir, ĂȘtre complĂ©tĂ©es par d’autres pays et par la prise en compte de sources d’émissions provenant de sources non analysĂ©es par le DDPP (affectation des terres, procĂ©dĂ©s industriels, etc.).Le rapport 2015 insiste particuliĂšrement sur la compatibilitĂ© des objectifs de dĂ©carbonation et de dĂ©veloppement Ă©conomique et social. DĂ©carboner permet en effet en premier lieu d’éviter les effets dĂ©lĂ©tĂšres du changement climatique, et s’inscrit en parallĂšle dans une stratĂ©gie d’amĂ©lioration significative de services essentiels comme l’accĂšs Ă  l’énergie. Les stratĂ©gies de dĂ©carbonation profonde peuvent contribuer au dĂ©veloppement durable des pays.Enfin, les investissements nĂ©cessaires Ă  la dĂ©carbonation profonde, de l’ordre de 0,8% du PIB en 2020 (1,3 % en 2050), ne reprĂ©sentent pas un surcoĂ»t majeur par rapport aux investissements nĂ©cessaires en l’absence de politiques climatiques. De plus, sous rĂ©serve de signaux adĂ©quats sur le long terme, la rĂ©orientation des investissements vers les technologies bas carbone ouvrent d’importantes perspectives commerciales.Dans le cadre de la COP21, oĂč se nĂ©gocie ces jours-ci un accord pour un nouveau rĂ©gime climatique Ă  partir de 2020, les stratĂ©gies de dĂ©carbonation sont indispensables pour informer les feuilles de route portant sur les choix de long terme, Ă©vitant ainsi des situations de blocage (lock-in), notamment technologiques, pouvant in fine freiner l’action climatique et en retarder ses effets
    corecore