4,058 research outputs found

    Testing mechanisms of Bergmann’s rule: Phenotypic decline but no genetic change in body size in three posserine bird populations

    Get PDF
    Bergmann’s rule predicts a decrease in body size with increasing temperature and has much empirical support. Surprisingly, we know very little about whether “Bergmann size clines” are due to a genetic response or are a consequence of phenotypic plasticity. Here, we use data on body size (mass and tarsus length) from three long-term (1979–2008) study populations of great tits (Parus major) that experienced a temperature increase to examine mechanisms behind Bergmann’s rule. We show that adult body mass decreased over the study period in all populations and that tarsus length increased in one population. Both body mass and tarsus length were heritable and under weak positive directional selection, predicting an increase, rather than a decrease, in body mass. There was no support for microevolutionary change, and thus the observed declines in body mass were likely a result of phenotypic plasticity. Interestingly, this plasticity was not in direct response to temperature changes but seemed to be due to changes in prey dynamics. Our results caution against interpreting recent phenotypic body size declines as adaptive evolutionary responses to temperature changes and highlight the importance of considering alternative environmental factors when testing size clines.

    Voltage sensing in ion channels: Mesoscale simulations of biological devices

    Get PDF
    Electrical signaling via voltage-gated ion channels depends upon the function of a voltage sensor (VS), identified with the S1-S4 domain in voltage-gated K+ channels. Here we investigate some energetic aspects of the sliding-helix model of the VS using simulations based on VS charges, linear dielectrics and whole-body motion. Model electrostatics in voltage-clamped boundary conditions are solved using a boundary element method. The statistical mechanical consequences of the electrostatic configurational energy are computed to gain insight into the sliding-helix mechanism and to predict experimentally measured ensemble properties such as gating charge displaced by an applied voltage. Those consequences and ensemble properties are investigated for two alternate S4 configurations, \alpha- and 3(10)-helical. Both forms of VS are found to have an inherent electrostatic stability. Maximal charge displacement is limited by geometry, specifically the range of movement where S4 charges and counter-charges overlap in the region of weak dielectric. Charge displacement responds more steeply to voltage in the \alpha-helical than the 3(10)-helical sensor. This difference is due to differences on the order of 0.1 eV in the landscapes of electrostatic energy. As a step toward integrating these VS models into a full-channel model, we include a hypothetical external load in the Hamiltonian of the system and analyze the energetic in/output relation of the VS.Comment: arXiv admin note: substantial text overlap with arXiv:1112.299

    Equicontinuous Families of Markov Operators in View of Asymptotic Stability

    Get PDF
    Relation between equicontinuity, the so called e property and stability of Markov operators is studied. In particular, it is shown that any asymptotically stable Markov operator with an invariant measure such that the interior of its support is nonempty satisfies the e property

    A nonlinear equation for ionic diffusion in a strong binary electrolyte

    Full text link
    The problem of the one dimensional electro-diffusion of ions in a strong binary electrolyte is considered. In such a system the solute dissociates completely into two species of ions with unlike charges. The mathematical description consists of a diffusion equation for each species augmented by transport due to a self consistent electrostatic field determined by the Poisson equation. This mathematical framework also describes other important problems in physics such as electron and hole diffusion across semi-conductor junctions and the diffusion of ions in plasmas. If concentrations do not vary appreciably over distances of the order of the Debye length, the Poisson equation can be replaced by the condition of local charge neutrality first introduced by Planck. It can then be shown that both species diffuse at the same rate with a common diffusivity that is intermediate between that of the slow and fast species (ambipolar diffusion). Here we derive a more general theory by exploiting the ratio of Debye length to a characteristic length scale as a small asymptotic parameter. It is shown that the concentration of either species may be described by a nonlinear integro-differential equation which replaces the classical linear equation for ambipolar diffusion but reduces to it in the appropriate limit. Through numerical integration of the full set of equations it is shown that this nonlinear equation provides a better approximation to the exact solution than the linear equation it replaces.Comment: 4 pages, 1 figur

    Monte Carlo simulation for statistical mechanics model of ion channel cooperativity in cell membranes

    Full text link
    Voltage-gated ion channels are key molecules for the generation and propagation of electrical signals in excitable cell membranes. The voltage-dependent switching of these channels between conducting and nonconducting states is a major factor in controlling the transmembrane voltage. In this study, a statistical mechanics model of these molecules has been discussed on the basis of a two-dimensional spin model. A new Hamiltonian and a new Monte Carlo simulation algorithm are introduced to simulate such a model. It was shown that the results well match the experimental data obtained from batrachotoxin-modified sodium channels in the squid giant axon using the cut-open axon technique.Comment: Paper has been revise

    States of the Dirac equation in confining potentials

    Full text link
    We study the Dirac equation in confining potentials with pure vector coupling, proving the existence of metastable states with longer and longer lifetimes as the non-relativistic limit is approached and eventually merging with continuity into the Schr\"odinger bound states. We believe that the existence of these states could be relevant in high energy model construction and in understanding possible resonant scattering effects in systems like Graphene. We present numerical results for the linear and the harmonic cases and we show that the the density of the states of the continuous spectrum is well described by a sum of Breit-Wigner lines. The width of the line with lowest positive energy, as expected, reproduces very well the Schwinger pair production rate for a linear potential: we thus suggest a different way of obtaining informations on the pair production in unbounded, non uniform electric fields, where very little is known.Comment: 4 page

    Steady state existence of passive vector fields under the Kraichnan model

    Full text link
    The steady state existence problem for Kraichnan advected passive vector models is considered for isotropic and anisotropic initial values in arbitrary dimension. The model includes the magnetohydrodynamic (MHD) equations, linear pressure model (LPM) and linearized Navier-Stokes (LNS) equations. In addition to reproducing the previously known results for the MHD and linear pressure model, we obtain the values of the Kraichnan model roughness parameter Îľ\xi for which the LNS steady state exists.Comment: Improved text & figures, added references & other correction

    Monte Carlo study of gating and selection in potassium channels

    Full text link
    The study of selection and gating in potassium channels is a very important issue in modern biology. Indeed such structures are known in all types of cells in all organisms where they play many important functional roles. The mechanism of gating and selection of ionic species is not clearly understood. In this paper we study a model in which gating is obtained via an affinity-switching selectivity filter. We discuss the dependence of selectivity and efficiency on the cytosolic ionic concentration and on the typical pore open state duration. We demonstrate that a simple modification of the way in which the selectivity filter is modeled yields larger channel efficiency

    Optimization of the leak conductance in the squid giant axon

    Full text link
    We report on a theoretical study showing that the leak conductance density, \GL, in the squid giant axon appears to be optimal for the action potential firing frequency. More precisely, the standard assumption that the leak current is composed of chloride ions leads to the result that the experimental value for \GL is very close to the optimal value in the Hodgkin-Huxley model which minimizes the absolute refractory period of the action potential, thereby maximizing the maximum firing frequency under stimulation by sharp, brief input current spikes to one end of the axon. The measured value of \GL also appears to be close to optimal for the frequency of repetitive firing caused by a constant current input to one end of the axon, especially when temperature variations are taken into account. If, by contrast, the leak current is assumed to be composed of separate voltage-independent sodium and potassium currents, then these optimizations are not observed.Comment: 9 pages; 9 figures; accepted for publication in Physical Review
    • …
    corecore