55 research outputs found

    Chemical Composition of Polymer Surfaces Imaged by Atomic ForceMicroscopy and Complementary Approaches

    Get PDF
    In this article we review the recent developments in the field of high resolution lateral mapping of the surface chemical composition of polymers by atomic force microscopy (AFM) and other complementary imaging techniques. The different AFM approaches toward nanometer scale mapping with chemical sensitivity based on chemical force microscopy (CFM) are discussed as a means to unravel, for instance, the lateral distribution of surface chemistry, the stability of various types of functional groups in various environments, or the interactions with controlled functional groups at the tip surface. The applicability and current limitations of CFM, which allows one to image chemical functional group distributions with a resolution in principle down to the 10–20 nm scale, are critically discussed. In addition, complementary imaging techniques are briefly reviewed and compared to the AFM-based techniques. The complementary approaches comprise various spectroscopies (infrared and Raman), secondary ion mass spectrometry (SIMS), matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), X-ray photoelectron spectroscopy (XPS or ESCA), and near-field optical techniques used for imaging

    Lamellae-controlled electrical properties of polyethylene-morphology, oxidation and effects of antioxidant on the DC conductivity

    Get PDF
    Destruction of the spherulite structure in low-density polyethylene (LDPE) is shown to result in a more insulating material at low temperatures, while the reverse effect is observed at high temperatures. On average, the change in morphology reduced the conductivity by a factor of 4, but this morphology-related decrease in conductivity was relatively small compared with the conductivity drop of more than 2 decades that was observed after slight oxidation of the LDPE (at 25 \ub0C and 30 kV mm-1). The conductivity of LDPE was measured at different temperatures (25-60 \ub0C) and at different electrical field strengths (3.3-30 kV mm-1) for multiple samples with a total crystalline content of 51 wt%. The transformation from a 5 ÎĽm coherent structure of spherulites in the LDPE to an evenly dispersed random lamellar phase (with retained crystallinity) was achieved by extrusion melt processing. The addition of 50 ppm commercial phenolic antioxidant to the LDPE matrix (e.g. for the long-term use of polyethylene in high voltage direct current (HVDC) cables) gave a conductivity ca. 3 times higher than that of the same material without antioxidants at 60 \ub0C (the operating temperature for the cables). For larger amounts of antioxidant up to 1000 ppm, the DC conductivity remained stable at ca. 1 7 10-14 S m-1. Finite element modeling (FEM) simulations were carried out to model the phenomena observed, and the results suggested that the higher conductivity of the spherulite-containing LDPE stems from the displacement and increased presence of polymeric irregularities (formed during crystallization) in the border regions of the spherulite structures

    Tuneable conductivity at extreme electric fields in ZnO tetrapod-silicone composites for high-voltage power cable insulation

    Get PDF
    Resistive Field Grading Materials (RFGM) are used in critical regions in the electrical insulation system of high-voltage direct-current cable systems. Here, we describe a novel type of RFGM, based on a percolated network of zinc oxide (ZnO) tetrapods in a rubber matrix. The electrical conductivity of the composite increases by a factor of 108 for electric fields > 1\ua0kV\ua0mm-1, as a result of the highly anisotropic shape of the tetrapods and their significant bandgap (3.37\ua0eV). We demonstrate that charge transport at fields < 1\ua0kV\ua0mm-1 is dominated by thermally activated hopping of charge carriers across spatially, as well as energetically, localized states at the ZnO-polymer interface. At higher electric fields (> 1\ua0kV\ua0mm-1) band transport in the semiconductive tetrapods triggers a large increase in conductivity. These geometrically enhanced ZnO semiconductors outperform standard additives such as SiC particles and ZnO micro varistors, providing a new class of additives to achieve variable conductivity in high-voltage cable system applications

    The Mechanical Properties of Epoxy Composites Filled with Rubbery Copolymer Grafted SiO\u3csub\u3e2\u3c/sub\u3e

    Get PDF
    This study demonstrated a method for toughening a highly crosslinked anhydride cured DGEBA epoxy using rubbery block copolymer grafted SiO2 nanoparticles. The particles were synthesized by a sequential reversible addition-fragmentation chain transfer (RAFT) polymerization. The inner rubbery block poly(n-hexyl methacrylate) (PHMA) had a glass transition temperature below room temperature. The outer block poly(glycidyl methacrylate) (PGMA) was matrix compatible. A rubbery interlayer thickness of 100% and 200% of the particle core radius was achieved by grafting a 20 kg/mol and a 40 kg/mol PHMA at a graft density of 0.7 chains/nm2 from the SiO2 surface. The 20 kg/mol rubbery interlayer transferred load more efficiently to the SiO2 cores than the 40 kg/mol rubbery interlayer and maintained the epoxy modulus up to a loading of 10 vol% of the rubbery interlayer. Both systems enabled cavitation or plastic dilatation. Improvement of the strain-to-break and the tensile toughness was found in both systems. We hypothesize that plastic void growth in the matrix is the primary mechanism causing the improvement of the ductility

    Loss and recovery of hydrophobicity of polydimethylsiloxane after exposure to electrical discharges

    No full text
    Silicone rubber based on polydimethylsiloxane is used ashigh voltage outdoor insulation, due to its ability to preservethe hydrophobic surface properties during service and evenregain hydrophobicity after exposure to electrical discharges.The underlying processes for the hydrophobic recovery arediffusion of low molar mass siloxanes from the bulk to thesurface and reorientation by conformational changes ofmolecules in the surface region. Only little is known of whichfactors are responsible for the long-term stability of thishydrophobic recovery. It is therefore important to increase theknowledge about the fundamental mechanisms for the loss andrecovery of hydrophobicity of silicone rubbers, exposed toelectrical discharges. Addition-cured polydimethylsiloxanenetworks, with known crosslink densities, were exposed tocorona discharges and air/oxygen-plasma and the loss andrecovery of hydrophobicity was characterised by contact anglemeasurements. The degree of surface oxidation increased withincreasing exposure time with a limiting depth of 100- 150 nm,as assessed by neutron reflectivity measurements. The oxidationrate increased with increasing crosslink density of the polymernetwork, according to X-ray photoelectron spectroscopy. Withinthe oxidised layer, a brittle, silica-like layer was graduallydeveloped with increasing exposure time. The hydrophobicrecovery following the corona or air/oxygen- plasma exposuresoccurred at a slow pace by diffusion of cyclic oligomericdimethylsiloxanes through the micro-porous but uncrackedsilica-like surface layer or at a much higher pace by transportof the oligomers through cracks in the silica-like layer. Theoligomers were present in the bulk, but additional amounts wereformed during exposure to corona discharges. High-temperaturevulcanised silicone rubber specimens were aged in a coastalenvironment under high electrical stress levels (100 V/mm). Thechanges in surface structure and properties were compared tothe data obtained from specimens exposed to coronadischarges/plasma. The dominating degradation mechanism wasthermal depolymerisation, initiated by hot discharges. Thisresulted in the formation of mobile siloxanes, of which the lowmolar mass fraction consisted of cyclic oligomericdimethylsiloxanes. Oxidative crosslinking resulting insilica-like surface layers was not observed during theseconditions. Keywords:silicone rubber, polydimethylsiloxane,hydrophobicity, corona, air-plasma, oxygen-plasma, surfacecharacterisation, degradation products, crosslink density.NR 2014080

    Hydrophobic Recovery of UV/Ozone Treated Poly(dimethylsiloxane): Adhesion Studies by Contact Mechanics and Mechanism of Surface Modification

    Get PDF
    Silicone elastomers (Sylgard 184 and 170), based on poly(dimethylsiloxane) (PDMS), were surface treated by a combined exposure to UV and ozone. The effects of the treatments were analyzed as a function of time elapsed after stopping the treatments using different standard surface characterization techniques, such as water contact angle measurements, XPS and atomic force microscopy (AFM). However, the primary focus of this study was to apply the Johnson–Kendall–Roberts (JKR) contact mechanics approach to investigate PDMS samples prior to and following UV/ozone surface treatment. A gradual formation of a hydrophilic, silica-like surface layer with increasing modulus was observed with increasing UV/ozone exposure. A subsequent hydrophobic recovery after UV/ozone exposure was observed, as indicated by increasing contact angles. This supports the hypothesis that the hydrophobic recovery is mainly caused by the gradual coverage of a permanent silica-like structure with free siloxanes and/or reorientation of polar groups. PDMS containing a homogenously dispersed filler (Sylgard 184), exhibited a decreasing surface roughness (by AFM) when the oxidized surface region “collapsed” into a smooth SiOx layer (final surface roughness <2 nm). PDMS containing heterogeneously distributed, aggregated filler particles (Sylgard 170), exhibited an increasing surface roughness with treatment dose, which was attributed to the “collapse” of the oxidized surface region thus exposing the contours of the underlying filler aggregates (final surface roughness 140 nm). A dedicated device was designed and built to study the contact mechanics behavior of PDMS prior to, and following surface treatment. The value of the combined elastic modulus obtained for PDMS lens and semi-infinite flat surface system showed an increase in full agreement with the formation of a silica-like layer exhibiting a high elastic modulus (compared with untreated PDMS). The work of adhesion observed in JKR experiments exhibited an increasing trend as a function of treatment done in agreement with contact angle data. JKR experiments showed hydrophobic recovery behavior as anticipated from contact angle measurements. Single pull-off force measurements by JKR and numerical analysis of full-approach JKR curves were in quantitative agreement regarding practical work of adhesion values

    AC or DC Corona Ageing of HTV Silicone Rubber

    No full text
    The test rig proposed by CIGRE WG D 1.14 [1] for evaluating the resistance to corona and ozone of polymeric materials for high voltage outdoor applications makes use of a multi-needle electrode as an artificial corona source for treatment of material samples. The electrode can be energized from either AC or DC high voltage sources. Two types of commercially available high temperature vulcanized silicone rubbers (HTV) were selected for the study described in this paper. Experimental investigations were carried out to evaluate dielectric properties (e.g. surface and bulk resistivities, dielectric response), mechanical properties (e.g. tensile strength, elongation at break), and chemical structural changes (analyzed by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR)) of material samples after exposure to ac or dc corona discharges. In addition, the loss and recovery of hydrophobicity of the materials were characterized by contact angle measurements
    • …
    corecore