50 research outputs found

    Frustration-induced diffusive scattering anomaly and dimension change in FeGe2\rm FeGe_2

    Full text link
    Magnetic frustration, arising from the competition of exchange interactions, has received great attention because of its relevance to exotic quantum phenomena in materials. In the current work, we report an unusual checkerboard-shaped scattering anomaly in FeGe2\rm FeGe_2, far from the known incommensurate magnetic satellite peaks, for the first time by inelastic neutron scattering. More surprisingly, such phenomenon appears as spin dynamics at low temperature, but it becomes prominent above N\'eel transition as elastic scattering. A new model Hamiltonian that includes an intraplane next-nearest neighbor was proposed and attributes such anomaly to the near-perfect magnetic frustration and the emergence of unexpected two-dimensional magnetic order in the quasi-one-dimensional FeGe2\rm FeGe_2.Comment: 24 pages, 10 figure

    Temperature dependence of phonons in FeGe_2

    Get PDF
    Inelastic neutron scattering was used to measure phonon dispersions in a single crystal of FeGe_2 with the C16 structure at 300, 500, and 635 K. Phonon densities of states (DOS) were also measured on polycrystalline FeGe_2 from 325 to 1050 K, and the Fe partial DOS was obtained from polycrystalline ^(57)FeGe_2 at 300 K using nuclear resonant inelastic x-ray scattering. The dominant feature in the temperature dependence of the phonon spectrum is thermal broadening of high-energy modes. The energy shifts of the low- and high-energy parts of the spectrum were almost the same. DFT calculations performed with the quasiharmonic approximation gave results in moderate agreement with the experimental thermal energy shifts, although the isobaric Grüneisen parameter calculated from the quasiharmonic model was smaller than that from measurements. The thermal broadening of the phonon spectrum and dispersions, especially at high energies, indicates a cubic anharmonicity to second order that should also induce phonon shifts. We show that different anharmonic contributions cancel out, giving average phonon shifts in moderate agreement to calculations with the quasiharmonic approximation. The different parts of the large phonon contribution to the entropy are separated for FeGe_2, showing modest but interpretable anharmonic contributions

    Temperature dependence of phonons in FeGe_2

    Get PDF
    Inelastic neutron scattering was used to measure phonon dispersions in a single crystal of FeGe_2 with the C16 structure at 300, 500, and 635 K. Phonon densities of states (DOS) were also measured on polycrystalline FeGe_2 from 325 to 1050 K, and the Fe partial DOS was obtained from polycrystalline ^(57)FeGe_2 at 300 K using nuclear resonant inelastic x-ray scattering. The dominant feature in the temperature dependence of the phonon spectrum is thermal broadening of high-energy modes. The energy shifts of the low- and high-energy parts of the spectrum were almost the same. DFT calculations performed with the quasiharmonic approximation gave results in moderate agreement with the experimental thermal energy shifts, although the isobaric Grüneisen parameter calculated from the quasiharmonic model was smaller than that from measurements. The thermal broadening of the phonon spectrum and dispersions, especially at high energies, indicates a cubic anharmonicity to second order that should also induce phonon shifts. We show that different anharmonic contributions cancel out, giving average phonon shifts in moderate agreement to calculations with the quasiharmonic approximation. The different parts of the large phonon contribution to the entropy are separated for FeGe_2, showing modest but interpretable anharmonic contributions

    Structural brain correlates of serum and epigenetic markers of inflammation in major depressive disorder

    Get PDF
    Funding Information: Generation Scotland received core support from the Chief Scientist Office of the Scottish Government Health Directorates [CZD/16/6] and the Scottish Funding Council [HR03006] and is currently supported by the Wellcome Trust [216767/Z/19/Z]. Genotyping of the GS:SFHS samples was carried out by the Genetics Core Laboratory at the Edinburgh Clinical Research Facility, University of Edinburgh, Scotland and was funded by the Medical Research Council UK and the Wellcome Trust (Wellcome Trust Strategic Award “STratifying Resilience and Depression Longitudinally” (STRADL) Reference 104036/Z/14/Z). CG is supported by The Medical Research Council and The University of Edinburgh through the Precision Medicine Doctoral Training program. SRC is supported by the UK Medical Research Council [MR/R024065/1] and a National Institutes of Health (NIH) research grant R01AG054628. Acknowledgements The authors thank all of the STRADL and Generation Scotland participants for their time and effort taking part in this study. We would also like to thank all of the research assistants, clinicians and technicians for their help in the collecting this data.Peer reviewedPublisher PD

    Energy balance affects pulsatile secretion of luteinizing hormone from the adenohypophesis and expression of neurokinin B in the hypothalamus of ovariectomized gilts

    Get PDF
    The pubertal transition of gonadotropin secretion in pigs is metabolically gated. Kisspeptin (KISS1) and neurokinin B (NKB) are coexpressed in neurons within the arcuate nucleus of the hypothalamus (ARC) and are thought to play an important role in the integration of nutrition and metabolic state with the reproductive neuroendocrine axis. The hypothesis that circulating concentrations of luteinizing hormone (LH) and expression of KISS1 and tachykinin 3(TAC3, encodes NKB) in the ARC of female pigs are reduced with negative energy balance was tested using ovariectomized, prepubertal gilts fed to either gain or lose body weight. Restricted feeding of ovariectomized gilts caused a rapid and sustained metabolic response characterized by reduced concentrations of plasma urea nitrogen, insulin, leptin, and insulin-like growth factor-1 and elevated concentrations of free fatty acids. The secretory pattern of LH shifted from one of low amplitude to one of high amplitude, which caused overall circulating concentrations of LH to be greater in restricted gilts. Nutrient-restricted gilts had greater expression of follicle-stimulating hormone and gonadotropinreleasing hormone receptor, but not LH in the anterior pituitary gland. Expression of KISS1 in the ARC was not affected by dietary treatment, but expression of TAC3 was greater in restricted gilts. These data are consistent with the idea that hypothalamic expression of KISS1 is correlated with the number of LH pulse in pig, and further indicate that amplitude of LH pulses may be regulated by NKB in the gilt

    AID-Targeting and Hypermutation of Non-Immunoglobulin Genes Does Not Correlate with Proximity to Immunoglobulin Genes in Germinal Center B Cells

    Get PDF
    Upon activation, B cells divide, form a germinal center, and express the activation induced deaminase (AID), an enzyme that triggers somatic hypermutation of the variable regions of immunoglobulin (Ig) loci. Recent evidence indicates that at least 25% of expressed genes in germinal center B cells are mutated or deaminated by AID. One of the most deaminated genes, c-Myc, frequently appears as a translocation partner with the Ig heavy chain gene (Igh) in mouse plasmacytomas and human Burkitt's lymphomas. This indicates that the two genes or their double-strand break ends come into close proximity at a biologically relevant frequency. However, the proximity of c-Myc and Igh has never been measured in germinal center B cells, where many such translocations are thought to occur. We hypothesized that in germinal center B cells, not only is c-Myc near Igh, but other mutating non-Ig genes are deaminated by AID because they are near Ig genes, the primary targets of AID. We tested this “collateral damage” model using 3D-fluorescence in situ hybridization (3D-FISH) to measure the distance from non-Ig genes to Ig genes in germinal center B cells. We also made mice transgenic for human MYC and measured expression and mutation of the transgenes. We found that there is no correlation between proximity to Ig genes and levels of AID targeting or gene mutation, and that c-Myc was not closer to Igh than were other non-Ig genes. In addition, the human MYC transgenes did not accumulate mutations and were not deaminated by AID. We conclude that proximity to Ig loci is unlikely to be a major determinant of AID targeting or mutation of non-Ig genes, and that the MYC transgenes are either missing important regulatory elements that allow mutation or are unable to mutate because their new nuclear position is not conducive to AID deamination

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Progesterone receptor membrane component 1 inhibits tumor necrosis factor alpha induction of gene expression in neural cells.

    No full text
    Progesterone membrane receptor component 1 (Pgrmc1) is a cytochrome b5-related protein with wide-ranging functions studied most extensively in non-neural tissues. We previously demonstrated that Pgrmc1 is widely distributed in the brain with highest expression in the limbic system. To determine Pgrmc1 functions in cells of these regions, we compared transcriptomes of control siRNA-treated and Pgrmc1 siRNA-treated N42 hypothalamic cells using whole genome microarrays. Our bioinformatics analyses suggested that Pgrmc1 plays a role in immune functions and likely regulates proinflammatory cytokine signaling. In follow-up studies, we showed that one of these cytokines, TNFα, increased expression of rtp4, ifit3 and gbp4, genes found on microarrays to be among the most highly upregulated by Pgrmc1 depletion. Moreover, either Pgrmc1 depletion or treatment with the Pgrmc1 antagonist, AG-205, increased both basal and TNFα-induced expression of these genes in N42 cells. TNFα had no effect on levels of Rtp4, Ifit3 or Gbp4 mRNAs in mHippoE-18 hippocampal control cells, but Pgrmc1 knock-down dramatically increased basal and TNFα-stimulated expression of these genes. P4 had no effect on gbp4, ifit3 or rtp4 expression or on the ability of Pgrmc1 to inhibit TNFα induction of these genes. However, a majority of the top upstream regulators of Pgrmc1 target genes were related to synthesis or activity of steroids, including P4, that exert neuroprotective effects. In addition, one of the identified Pgrmc1 targets was Nr4a1, an orphan receptor important for the synthesis of most steroidogenic molecules. Our findings indicate that Pgrmc1 may exert neuroprotective effects by suppressing TNFα-induced neuroinflammation and by regulating neurosteroid synthesis

    Finding FRiENDs: Creating a Community of Support for Early Career Academics

    No full text
    Starting on an academic journey can be a stressful and isolating experience. Although some universities have formal mentoring structures to facilitate this transition for new faculty, these structures do not always provide the variety of supports that may be needed to navigate the complexities of transitioning to the world of academia. As we (the authors of this paper) began our academic journeys, we found ourselves searching for support that was not available within our institutions. By drawing on previous connections and building new connections to peers at other universities, we created an informal peer mentoring structure that has continued to support us through the early years of our careers in academia. In this paper we share our stories of the challenges we faced as early career academics, discuss the ways this informal peer mentoring community provided support for us at the beginnings of our academic journeys, and offer advice for other early career academics seeking non-traditional forms of support along the academic career path
    corecore