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Metabolomic Investigation of Major Depressive
Disorder Identifies a Potentially Causal
Association With Polyunsaturated Fatty Acids

Eleanor Davyson, Xueyi Shen, Danni A. Gadd, Elena Bernabeu, Robert F. Hillary,
Daniel L. McCartney, Mark Adams, Riccardo Marioni, and Andrew M. McIntosh
ISS
ABSTRACT
BACKGROUND: Metabolic differences have been reported between individuals with and without major depressive
disorder (MDD), but their consistency and causal relevance have been unclear.
METHODS: We conducted a metabolome-wide association study of MDD with 249 metabolomic measures available
in the UK Biobank (n = 29,757). We then applied two-sample bidirectional Mendelian randomization and
colocalization analysis to identify potentially causal relationships between each metabolite and MDD.
RESULTS: A total of 191 metabolites tested were significantly associated with MDD (false discovery rate–corrected
p , .05), which decreased to 129 after adjustment for likely confounders. Lower abundance of omega-3 fatty acid
measures and a higher omega-6 to omega-3 ratio showed potentially causal effects on liability to MDD. There was
no evidence of a causal effect of MDD on metabolite levels. Furthermore, genetic signals associated with
docosahexaenoic acid colocalized with loci associated with MDD within the fatty acid desaturase gene cluster.
Post hoc Mendelian randomization of gene-transcript abundance within the fatty acid desaturase cluster
demonstrated a potentially causal association with MDD. In contrast, colocalization analysis did not suggest a
single causal variant for both transcript abundance and MDD liability, but rather the likely existence of two variants
in linkage disequilibrium with one another.
CONCLUSIONS: Our findings suggest that decreased docosahexaenoic acid and increased omega-6 to omega-3
fatty acids ratio may be causally related to MDD. These findings provide further support for the causal
involvement of fatty acids in MDD.

https://doi.org/10.1016/j.biopsych.2023.01.027
Major depressive disorder (MDD) is a debilitating condition
estimated to affect 322 million people, leading to a global total
of 50 million years lived with disability (1). This is due to both
the high prevalence of MDD and its frequent comorbidity with
other conditions (2–4), particularly cardiovascular disease (5).
Most antidepressants target monoamine-related pathways (6)
but are ineffective in 40% of cases (7). Better understanding of
the molecular mechanisms of MDD may aid in the develop-
ment of more effective treatments.

Twin studies have estimated the heritability of MDD as
w37% (8), and investigating this genetic component of MDD
may help to identify its pathophysiological basis. Recently,
genome-wide association studies (GWASs) have been
increasingly successful in identifying genetic variants associ-
ated with MDD (9–11). Despite this success, the high poly-
genicity of MDD presents significant challenges to researchers
who wish to identify actionable mechanisms lying between
genetic variants and clinical phenotype (12). One means of
translating genetic findings into biomarkers and biological
mechanisms is through the incorporation of molecular
phenotype data, such as metabolomics. These data may help
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to clarify the downstream functional impact of identified risk
single nucleotide variants (SNVs) on molecular traits. This in-
formation can then be utilized to stratify risk, provide thera-
peutic targets, or enable lifestyle interventions (13).

There have been several recent studies investigating the
links between genetic risk for MDD and molecular phenotypes,
including DNA methylation (14,15), messenger RNA (mRNA)
levels (16,17), and protein markers (18,19). Metabolomics
considers the role of circulating metabolites (20), including
lipids, amino acids, and other small molecules that have been
implicated in a range of disorders and some hypothesis-driven
studies of MDD (21,22). The metabolome has not been char-
acterized to the same extent as other molecular phenotypes
(23), but the recent availability of reproducible high-throughput
metabolomics makes studies feasible for many thousands of
individuals (24). Studying the association between metabolite
levels and MDD may offer potential biomarkers and interven-
tional targets for MDD and provides a means to investigate
MDD’s comorbidity with cardiometabolic disorders (2,3). Most
previous metabolic studies of MDD have concentrated on
small numbers of metabolites (25), often used sample sizes of
f Biological Psychiatry. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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,100 (25–29), and implemented a variety of methodological
approaches all leading to somewhat heterogeneous findings
(30). However, larger and more standardized studies are
beginning to emerge; a recent meta-analysis of 230 metabolite
levels in 15,428 individuals (5283 cases and 10,145 controls)
found evidence of a distinct metabolomic profile associated
with MDD (31).

The UK Biobank (UKB) recently released a large metab-
olomic dataset (32), in which we conducted a comprehensive
and agnostic examination of metabolite associations with
MDD. Association analysis between metabolites and MDD is
limited because of the susceptibility of these analyses to
confounding and reverse causation. We therefore also
assessed potentially causal associations between MDD and
metabolite levels, using two-sample Mendelian randomization
(MR). Finally, we sought to identify potentially causal gene
targets using MR and colocalization analysis of expression
quantitative trait loci (eQTL) (Figure S1 in Supplement 1).
METHODS AND MATERIALS

Study Population

The UKB is a large prospective study (N = 502,492) of par-
ticipants recruited from around the United Kingdom between
the ages of 40 and 69 (33). Baseline data collection, including
genotyping and extensive phenotyping for a range of health
outcomes, occurred between 2006 and 2010. UKB data
acquisition was approved by the North West National Health
Service Research Ethics Committee (11/NW/0382). The anal-
ysis and data acquisition for the present study were conducted
under application #4844. Written informed consent was ob-
tained from all participants.
Table 1. Demographics of MDD Cases and Controls

Demographic Characteristics
Controls,
n = 20,917

MDD Cases,
n = 8840

Age, Years, Mean (SD) 56.67 (7.67) 54.12 (7.55)

BMI, Mean (SD) 26.48 (4.18) 27.26 (5.12)

Female, % 49.95% 68.82%

SES, Mean 21.92 21.37

Never Smoked, % 59.72% 52.58%

Ethnicity (Mixed/Other/White), % 0.45%/2.2%/97% 0.7%/2%/97%

Attended University/College, % 46.36% 45.67%

BMI, body mass index; MDD, major depressive disorder; SES,
socioeconomic status.
Metabolic Biomarkers

A total of 249 metabolite biomarkers were quantified in non-
fasting baseline EDTA plasma samples (n = 118,021) (33),
collected at baseline assessment between April 2007 and
December 2010 (34), and measured between June 2019 and
April 2020 (31). Measurement was performed using the high-
throughput nuclear magnetic resonance (NMR) spectroscopy
profiling platform, developed by Nightingale Health Ltd.
Detailed methodology of the Nightingale NMR pipeline has
been described elsewhere (35–37). These biomarkers include
detailed cholesterol measures, fatty acid compositions, and
low-weight metabolites such as amino acids and ketones
(Table S1 in Supplement 2). Most biomarkers were measured
in absolute concentration (mmol/L), excluding apolipoproteins
A and B (measured in g/L), diameter measures (diameter of
very-low-density lipoprotein/low-density lipoprotein/high-
density lipoprotein particles in nm), and the degree of unsa-
turation measure (the total number of pi bonds and rings within
a molecule). Prior to analysis, the levels of each metabolite
biomarker were transformed to a standard normal distribution
using rank-based inverse normalization. Therefore, all reported
beta coefficients from regression analyses represent the
standardized change in ranked metabolite levels between
MDD cases and controls.
2 Biological Psychiatry - -, 2023; -:-–- www.sobp.org/journal
Assessment of MDD Status

The MDD phenotype used in this study was derived from the
online Thoughts and Feelings Questionnaire, fully completed
by 126,077 participants in July 2017 (38). The questionnaire
included the Composite International Diagnostic Interview
Short Form, from which MDD lifetime diagnoses were derived
(38) (Supplemental Methods and Materials in Supplement 1).
This sample (referred to as the Mental Health Questionnaire
sample) comprised 37,430 cases and 88,647 controls of whom
29,757 (8840 cases and 20,917 controls) also had metabolite
levels derived from their blood samples (Table 1).

Metabolome-wide Association Study

Linear regression models were used to test the association of
each metabolite level with the MDD phenotype (n = 29,757),
referred to as a metabolome-wide association study (Met-
WAS). In the basic MetWAS, only age, sex, assessment center,
and NMR spectrometer were included as covariates. MetWAS
analysis was also conducted with adjustment for socioeco-
nomic status, smoking status, ethnicity, educational attain-
ment, and body mass index (Supplemental Methods and
Materials in Supplement 1) due to the strong and potentially
confounding association between these factors with both
MDD and metabolite levels (39–42). Significance was defined
by false discovery rate (FDR)–corrected p (pFDR) values , .05.

Metabolite GWASs

For each metabolite, a GWAS was performed on unrelated
individuals of European ancestry (n = 88,329) using PLINK 2.0
(43). Unrelated individuals were identified as previously re-
ported (44). In brief, related individuals were initially excluded
based on a shared relatedness of up to the third degree using
kinship coefficients (.0.044) calculated using the KING toolset
(45). One member of each group of related individuals was then
subsequently added back in, by creating a genomic relation-
ship matrix and selecting individuals with a genetic relatedness
of ,0.025 with any other participant. Association testing was
performed on the imputed genotypes using an additive model
adjusted for age, sex, genotyping array, assessment center,
spectrometer, and 10 genetic principal components. Variants
with minor allele frequency (MAF), 0.001, minor allele count,
20, and an INFO score , 0.1 were removed. Insertion-
deletions were included in the analysis. To account for
multiple comparisons, significance was defined as the

http://www.sobp.org/journal
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genome-wide threshold divided by the number of principal
components, which account for 99% of the variance within the
metabolomic data (5 3 1028/42 = 1.19 3 1029), as described
previously (46,47). An F statistic for the strength of the asso-
ciation between the sentinel SNVs and metabolite levels was
calculated using the method: F = ([N 2 k 2 1] / k) 3 (r2 / [1 2

r2]), in which N = sample size, k = number of SNVs, and r2 =
variance explained in metabolite levels by the genetic
instruments. The r2 statistic was calculated as follows: r2 = 2 3

MAF 3 (1 2 MAF) 3 beta2, in which beta = effect size of the
SNV and MAF = the SNV effect allele frequency. SNV herita-
bility for each metabolite and the genetic correlation of the
metabolite with MDD was performed using linkage disequilib-
rium (LD) score regression as implemented in the LDSC
package (https://github.com/bulik/ldsc) (48,49). Precomputed
LD scores based on the 1000 Genomes Project data for Eu-
ropean ancestry (50) were used as the reference panel for
regression weights in the analysis (https://data.broadinstitute.
org/alkesgroup/LDSCORE).
Metabolite Bidirectional MR Analysis

Bidirectional MR was performed using the TwoSampleMR R
package, version 0.5.6 (51,52) to assess causality between the
metabolite (exposure) and MDD (outcome) for all metabolites,
and vice versa. The MR analysis used SNV effect sizes from
the UKB metabolite GWASs conducted in this study and the
MDD meta-analysis GWAS, performed by the Psychiatric Ge-
nomics Consortium (9), with UKB participants removed using 3
MR methods (inverse variance weighted, MR Egger, and
weighted median). Genetic instruments were identified by
clumping genome-wide significant SNVs (p , 1.19 3 1029 and
MAF . 0.005) using the clump_data function in the R package
TwoSampleMR (r2 = 0.001, within a 10-Mb window). Metabo-
lites with ,15 genetic instruments after harmonization with
MDD summary statistics were omitted from the MR analysis.
Colocalization

Colocalization analysis was performed between MDD and
metabolite genetic signals that showed potentially causal as-
sociations using MR, with a window of 1 Mb. Lead SNVs were
identified using the default clumping method (r2 = 0.1) on
the SNP2GENE tool within FUMA software (53). To avoid
running multiple colocalization tests of overlapping regions,
lead SNVs were ordered by significance and iteratively filtered
so that each lead SNV was .1 Mb away from any other lead
SNV. For each of the final lead SNVs, all SNVs within a 1-Mb
window from the metabolite GWAS and the MDD GWAS
were extracted from the respective summary statistics.
Colocalization analysis was then performed using the R coloc
package (version 5.1.1) (54). The prior probabilities were set to
default values: P1 (SNV is associated with the metabolite) and
P2 (SNV is associated with MDD) were both set at 1 3 1024,
and P12 (SNV is associated with both MDD and the metabolite)
was set at 1 3 1025. An arbitrary posterior probability . 0.8
was set for evidence of each of the 4 hypotheses: PP.H0—no
causal variant, PP.H1 and PP.H2—causal variant for one of the
traits, PP.H3—distinct causal variant for each trait, and
PP.H4—shared causal variant for both traits.
B

MR and Colocalization With eQTL Data

To probe possible mechanistic pathways between exposure
(metabolite) and outcome (MDD), colocalized MDD and
metabolite genetic signals were investigated to identify
whether they localized to any causal genes within the colo-
calized region. For genes lying within the same LD window as
colocalized MDD-metabolite genetic signals, we first identified
any cis-eQTLs from whole blood gene expression data (n =
948) from the Genotype-Tissue Expression (GTEx) Project (48).
Second, MR and complementary colocalization analyses were
performed to assess the causality of gene expression levels
(mRNA) with MDD. The MR analysis was performed using a
Wald ratio test (55), using a single instrumental SNV defined as
the most significant eQTL present in the dataset. For this post
hoc analysis, significance was defined as p , .05. The
instrumental SNVs were also used as lead SNVs in the
colocalization analysis. For each lead SNV, MDD GWAS (9)
and GTEx (56) summary statistics for variants within 61 Mb
were extracted as inputs for the colocalization analysis.

RESULTS

MetWAS MDD Association Analysis

The demographics of the Mental Health Questionnaire sample
(metabolomic and MDD data available; n = 29,757) are pre-
sented in Table 1. The basic MetWAS, without adjustment for
common confounders, found that 191 (w76%) metabolites
were significantly associated with MDD (pFDR , .05) (Figure S2
in Supplement 1; Table S2 in Supplement 2). The most
significant positive metabolite-MDD association was for
monosaturated fatty acids to total fatty acids (%), (b = 0.177,
pFDR = 1.52 3 10243), and the most significant negative
association was for polyunsaturated fatty acids to mono-
unsaturated fatty acids ratio (b = 20.176, pFDR = 1.85 3 10243).
After adjustment for possible confounders, 133 (w53%)
metabolites were significantly associated with MDD, 129 of
which (w52%) were shared in the unadjusted model (Figure 1;
Table S3 in Supplement 2). The most significant positive
metabolite-MDD association remained monosaturated fatty
acids to total fatty acids (b = 0.069, pFDR = 2.22 3 1027), while
the most significant negative metabolite-MDD association
changed to free cholesterol to total lipids in large low-density
lipoprotein percentage (B = 20.070, pFDR = 2.82 3 1027).
Across most metabolites (n = 224, unadjusted b range: 20.176
to 0.177), inclusion of confounders into the analysis attenuated
the absolute effect sizes by an average of 61% (adjusted b
range: 20.070 to 0.069) (Figure S3 in Supplement 1).

Metabolite GWASs

Manhattan plots for all 249 GWASs can be found in
Supplement 3. All metabolites had multiple independent (r2 =
0.001, within a 10-Mb window) genome-wide significant SNV
associations (p , 1.19 3 1029), all with F statistics . 10
(Table S4 in Supplement 2). The number of significant indepen-
dent SNVs ranged from 4 (phenylalanine and acetoacetate) to 60
(cholesteryl esters in large high-density lipoprotein) (Table S5 in
Supplement 2). SNV heritability of metabolites varied from
2.41% (histidine) to 19.9% (triglycerides to phosphoglycerides
ratio). A total of 144 metabolites (57%) showed a significant
iological Psychiatry - -, 2023; -:-–- www.sobp.org/journal 3
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Figure 1. Adjusted metabolome-wide association
study. Standardized effect sizes for metabolite–
major depressive disorder 1 covariates. Significant
associations (false discovery rate–corrected p , .05)
are shaded in, and the most significant association
for each metabolite group is labeled. C, cholesterol;
CE, cholesteryl esters; FC, free cholesterol; Gln,
glutamine; GlycA, glycoprotein acetyls; HDL, high-
density lipoprotein; L, large; LDL, low-density
lipoprotein; M, medium; MUFA, monounsaturated
fatty acids; P, particles; pct, percentage; PG, phos-
phoglycerides; PL, phospholipid; TG, triglyceride;
VLDL, very-low-density lipoprotein; XL, extra-large.
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genetic correlation with MDD (Table S6 in Supplement 2), with
absolute correlations ranging from (2) 0.073 (omega-3 fatty
acids to total fatty acids [%]) to (1) 0.180 (phospholipids to total
lipids in large high-density lipoprotein [%]). Of the metabolites
that showed a significant genetic correlation with MDD, 119
(w83%) also had significant associations with the MDD
phenotype in both the unadjusted and adjusted MetWAS
analyses.

Mendelian Randomization

In the metabolite (exposure) to MDD (outcome) MR analysis, 21
metabolites were excluded for having too few (,15) genetic
instruments (Figure S4 in Supplement 1). MR analysis on the
remaining 228 metabolites (Figure 2; Figure S5 in Supplement 1)
found 5 with significant evidence for a causal relationship with
MDD (Table 2; Table S7 in Supplement 2), all relating to long-
chain polyunsaturated fatty acids (LC-PUFAs). Specifically,
omega-3 fatty acid levels (omega-3 fatty acids, omega-3 to total
fatty acids [%], and docosahexaenoic acid [DHA]) and the de-
gree of unsaturation had a negative causal effect on MDD, while
the omega-6 to omega-3 ratio had a positive causal effect on
lifetime MDD (Figure S6 in Supplement 1). These metabolites
also had strong correlations with the other metabolites that
significantly associated with MDD in the MetWAS phenotypic
analysis, ranging from omega-3 fatty acids (significantly corre-
lated with 79% of associated metabolites) to the degree of
unsaturation (significantly correlated with 100% of the other
MDD-associated metabolites) (Figure S7 in Supplement 1). Of
the 5 putatively causal metabolites, only the degree of unsatu-
ration showed consistency in previous observational analyses,
maintaining a significant association and genetic correlation
with MDD (Figure S8 in Supplement 1). In the MR analysis in
4 Biological Psychiatry - -, 2023; -:-–- www.sobp.org/journal
which one SNV was left out, 3 of the significant metabolites to
MDD MR results—degree of unsaturation, omega-3 fatty acids,
and DHA—were dependent on rs174528, a single SNV in the
FADS gene cluster on chromosome 11 (Figure S9 in
Supplement 1; Table S8 in Supplement 2).

In the MDD (exposure) to metabolite (outcome) MR analysis,
all metabolite measures were included. In this analysis, there
was no significant evidence that MDD was significantly causal
to a change in any of the metabolite levels tested (b
range: 20.28 to 0.26, pFDR range: .91 to .99) (Figure S10 in
Supplement 1; Table S9 in Supplement 2).

Colocalization

The number of lead SNVs identified across the genome for the
5 metabolites with MR pFDR , .05 ranged from 20 (omega-3
fatty acids to total fatty acids [%]) to 30 (DHA) (Table S10 in
Supplement 2). DHA had strong evidence for colocalization
(PP.H4 = 0.89) with MDD at SNV rs2727271 (Table 2), which is
an intronic variant for the fatty acid desaturase 2 (FADS2) gene
(Figure 3). The rest of the metabolites showed weak evidence
of colocalization with MDD (PP.H4 , 0.2) (Figure S11 in
Supplement 1; Table S11 in Supplement 2).

MR and Colocalization With eQTL Data

Downstream eQTL-MDD MR analysis was performed for the
genes myelin regulatory factor (MYRF), flap endonuclease 1
(FEN1), transmembrane protein 258 (TMEM258), and FADS1/
2/3 (Figure 3D) because these were within the DHA-MDD
colocalized region on chromosome 11 and had eQTL data
available from GTEx. The analysis found that the mRNA levels
of MYRF, TMEM258, FADS1, FADS2, and FADS3 had poten-
tially positive causal effects on lifetime MDD status [odds ratio

http://www.sobp.org/journal


Figure 2. Metabolite to major depressive disorder
Mendelian randomization analysis. The odds ratios
of metabolite on lifetime major depressive disorder
status given by the inverse variance weighted Men-
delian randomization method, colored by metabolite
group. Significant Mendelian randomization findings
(false discovery rate–corrected p , .05) are filled in
and labeled. Unsaturation indicates the degree of
unsaturation, Omega_3_pct indicates omega-3 to
total fatty acids (%), Omega_3 indicates omega-3
fatty acids, and Omega_6_by_Omega_3 indicates
the omega-6 to omega-3 ratio. DHA, docosahexae-
noic acid.
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range: 1.01–1.12, p = 7.58 3 1027 to .011] (Figure S12 in
Supplement 1; Table 3). In contrast, mRNA levels of FEN1 were
not significantly causal to MDD status (odds ratio = 0.98, p =
.62). Subsequent colocalization analysis for the FADS cluster
eQTLs and MDD found minimal evidence of shared causal
variant for both gene expression and MDD. Supporting evi-
dence was strongest for the existence of two independent
causal variants for each trait at the same locus (PP.H3 . 0.7)
(Table S12 in Supplement 2).
Table 2. Significant Metabolite to MDD MR Results

Metabolite Method N (S

Degree of Unsaturation MR Egger 2

WM 2

IVW 2

Omega-3 Fatty Acids MR Egger 2

WM 2

IVW 2

Docosahexaenoic Acid MR Egger 2

WM 2

IVW 2

Omega-3 Fatty Acids to Total Fatty Acids (%) MR Egger 2

WM 2

IVW 2

Omega-6 Fatty Acids to Omega-3 Fatty Acids Ratio MR Egger 1

WM 1

IVW 1

All 3 MR methods for the 5 metabolites which showed a significant causa
performed for each metabolite for multiple lead SNVs, the top colocalization
table of colocalization results is found in Table S10 in Supplement 3.

IVW, inverse variance weighted; MDD, major depressive disorder; MR, Me
median.

B

DISCUSSION

This study reports a large-scale (n = 29,757) association and
causal analysis of blood metabolites with MDD. We found that
191 metabolites were significantly associated with lifetime
MDD status, 129 of which withstood further adjustment for
common confounders (39). These findings provide greater
confidence that the significant metabolite-MDD associations
observed in this study are not solely due to the effects of
NVs) Beta SE p pFDR PP.H4

5 20.063 0.021 6.20 3 1023 .893 0.026

5 20.069 0.016 1.20 3 1025 .002

5 20.063 0.015 1.80 3 1025 .004

3 20.044 0.021 5.10 3 1022 .893 0.13

3 20.068 0.016 1.30 3 1025 .002

3 20.046 0.013 3.30 3 1024 .025

4 20.066 0.025 1.60 3 1022 .893 0.89

4 20.078 0.019 4.50 3 1025 .003

4 20.054 0.016 6.80 3 1024 .039

3 20.057 0.021 1.30 3 1022 .893 0.16

3 20.063 0.018 4.80 3 1024 .022

3 20.054 0.014 2.20 3 1024 .025

8 0.062 0.026 3.10 3 1022 .893 0.15

8 0.067 0.019 4.70 3 1024 .022

8 0.052 0.016 8.80 3 1024 .040

l relationship with MDD in any MR method. Colocalization analysis was
result for each metabolite is reported in this table under PP.H4. The full

ndelian randomization; SNVs, single nucleotide variants; WM, weighted

iological Psychiatry - -, 2023; -:-–- www.sobp.org/journal 5
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Figure 3. Colocalization of docosahexaenoic acid
with MDD. (A) The association of single nucleotide
variants in the FADS cluster in the MDD genome-
wide association studies (without UK Biobank). (B)
The association of single nucleotide variants in
the FADS cluster in the docosahexaenoic acid
genome-wide association studies. (C) The genes
present in the FADS cluster. Genes colored red are
those that were present in the GTEx (Genotype-Tis-
sue Expression) data and consequently tested for a
causal relationship with MDD in the post hoc anal-
ysis. MDD, major depressive disorder.

Table 3. Expression Quantitative Trait Loci to MDD Wald
Ratio MR Results

Gene SNV OR 95% CI MR p Value

FADS1 rs174567 1.08 1.05–1.10 7.58 3 1027

FADS2 rs968567 1.01 1.01–1.02 6.33 3 1025

FADS3 rs2524288 1.05 1.01–1.10 .011

FEN1 rs10897119 0.98 0.89–1.07 .617

MYRF rs198462 1.03 1.01–1.05 .001

TMEM258 rs7943728 1.12 1.06–1.19 5.78 3 1025

These results indicate a positive causal effect of FADS1, FADS2,
FADS3, MYRF, and TMEM258 on lifetime MDD status.

MDD, major depressive disorder; MR, Mendelian randomization;
OR, odds ratio; SNV, single nucleotide variant.
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Biological
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confounding. Furthermore, we found that 144 metabolites
showed a significant genetic correlation with MDD, suggesting
a shared genetic architecture between the traits. Bidirectional
MR analyses found evidence for potentially causal relation-
ships between 5 metabolite measures relating to LC-PUFAs
and MDD. Complementary colocalization analyses between
these metabolites and MDD found that an omega-3 fatty acid,
DHA colocalized with MDD within the FADS region. Subse-
quent MR analysis of eQTL data of genes in the FADS cluster
found possible evidence of causality between MYRF, FADS1,
FADS2, FADS3, and TMEM258 mRNA abundance and MDD.
However, complementary colocalization analysis found evi-
dence that this locus contains separate independent causal
variants for mRNA abundance and MDD.

The MR analysis provides evidence that omega-3 LC-
PUFAs may have a negative causal effect on lifetime MDD,
while the ratio of omega-6 to omega-3 LC-PUFAs may have a
positive causal effect on lifetime MDD. Specifically,
6 Biological Psychiatry - -, 2023; -:-–- www.sobp.org/journal
colocalization analysis provided further support for a shared
causal variant between MDD and DHA. Research on omega-3
and omega-6 levels and MDD has been lengthy and complex
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(25,57–62). Although many cross-sectional and prospective
studies have observed a reduction in omega-3 fatty acids, and
an increase in the omega-6 to omega-3 ratio in those with
MDD (30,58,63), it is important to note both the considerable
methodological heterogeneity and contradictory evidence
(30,61,64). Clinical trial studies testing the efficacy of omega-3
supplements in the prevention and treatment of MDD also
show inconsistent findings (65–68). Notably, our findings
contradict results from a two-sample MR study in 2019, which
found no evidence of a significant causal effect of omega-3
levels on MDD (69). However, this study leveraged summary
statistics from smaller GWASs, and therefore may have been
underpowered to detect causal effects. The enzymatic
oxygenation of omega-3 and omega-6 fatty acids and their
derived eicosanoids have opposing anti-inflammatory and
proinflammatory effects, respectively (Figure S13 in
Supplement 1). Importantly, humans do not show endogenous
biosynthesis of active omega-3 and omega-6 fatty acids
(eicosapentaenoic acid and arachidonic acid, respectively) and
the levels of each are reliant on the intake of their precursors,
linoleic acid and alpha-linoleic acid, from the diet (70). Over the
last century, the ratio of omega-6 to omega-3 has increased
dramatically in many Western diets (20–30:1 compared with
1:1) (71), resulting in an imbalance in proinflammatory and
proresolving mediators that may contribute to MDD pathology
(72). Furthermore, there is a FADS haplotype associated with
more efficient LC-PUFA synthesis from the diet (73). While this
is evolutionarily advantageous in environments with limited
LC-PUFA availability, it may heighten the imbalance between
omega-6 and omega-3 levels resulting from modern Western
diets (73). Overall, this indicates the possibility that a dispro-
portionate dietary ratio of omega-6 to omega-3 may be
contributing to MDD through increased inflammatory pro-
cesses and that these may be exacerbated by certain genetic
haplotypes.

The post hoc MR analysis found evidence of a possible
causal association between MYRF, FADS1, FADS2, FADS3,
and TMEM258 mRNA levels and MDD. MYRF and TMEM258
each have plausible mechanisms for their association with
MDD due to links to abnormal myelination and intestinal stress,
respectively (74–76). The FADS enzymes however are directly
linked to the metabolism of both omega-3 and omega-6 LC-
PUFAs (77,78) and have been shown to be central regulators of
the ratio of their respective anti-inflammatory and proin-
flammatory lipid mediators (79). Therefore, this suggests that
FADS enzymes act as key regulatory molecules in the activa-
tion and resolution of inflammatory processes, which may be
important in the pathophysiology of MDD. A recent GWAS of
bipolar disorder in Japanese populations also found a genetic
association with FADS intron variants (80), indicating that this
association may not be specific to MDD, but rather shared
across different psychiatric disorders. Although this aligns with
evidence that MDD and bipolar disorder share genetic archi-
tecture (81), whether the disorders share the putative causal
effect of FADS found in this study would require additional
analysis dissecting the causal relationship of the FADS cluster
on bipolar disorder.

Despite these putative causal mechanisms, complementary
colocalization analysis between all eQTLs and MDD found
B

evidence that each trait had distinct, rather than shared, causal
variants at the locus. This indicates that the instrumental var-
iable in MR exhibits horizontal pleiotropy on the outcome (a
direct violation of the exchangeability assumption for MR), thus
weakening the evidence for causality (82,83). Therefore, it
cannot be determined with high confidence that the transcript
abundance of the genes within the FADS cluster has a direct
causal relationship with MDD, but rather that it may be
commonly seen alongside the presentation of MDD.

This study overcomes various limitations that existed in
previous metabolomic analyses of MDD. First, this study
analyzed the association and causal relationship between
MDD and 249 metabolites in a hypothesis-free manner, and
therefore reduces the possibility of confirmation bias, which
has been criticized in previous studies with an a priori focus
on LC-PUFAs (25). Second, previous studies often had
small sample sizes, each with distinct study methodology
and often suffering from self-report bias (30). This study
utilizes a large sample size from which metabolite levels
were biologically measured in the blood using NMR spec-
troscopy in a standardized, well-documented procedure
(35,37). Our findings are also strengthened by the integra-
tion of eQTL data from GTEx version 8 (56), which interro-
gated the role of the gene products from the colocalized
FADS region.

This study is limited because it tests the association of MDD
with plasma metabolite levels, despite MDD primarily being a
brain-based disorder. However, blood samples are minimally
invasive to collect, which is essential for enabling large-scale
high-powered studies and affords them the most promise for
future clinical applications. Another limitation to this analysis is
the high LD within the FADS region (73), meaning that a direct
violation of the exclusion-restriction assumption in MR may
exist, generating false-positive results (84). However, the
complementary use of MR and colocalization analysis in this
study acts as a sensitivity analysis (82). Another limitation is the
focus of this analysis on European ancestry, especially
because the frequencies of the FADS haplotypes differ
geographically. The divergent FADS haplotypes are more
commonly seen in non-European populations (85) and
are associated with an increased expression of FADS1 and a
more efficient LC-PUFA synthesis (73). Consequently, the
mechanistic effects hypothesized in this study may be greater
in non-European ancestral groups, which are not currently
captured in this analysis. Additionally, although this is a large-
scale metabolomic analysis, it is not wholly comprehensive for
the human metabolome (86). Indeed, the recent human
metabolome database (87) detailed 18,557 metabolites that
had been quantified and estimated the presence of thousands
more. Finally, as this study focused on MDD prevalence, it may
be biased by cases of chronic MDD within the cohort (88).
Future work should therefore investigate whether omega-3
fatty acid levels and the omega-6 to omega-3 ratio associate
with incident MDD.

In summary, this study interrogated the links between the
metabolome and MDD and indicated a protective role for DHA
against MDD. Furthermore, this study also suggests a role for
an increased ratio of omega-6 to omega-3 fatty acids in the
pathophysiology of MDD.
iological Psychiatry - -, 2023; -:-–- www.sobp.org/journal 7
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