22 research outputs found

    TRPV1 enhances the afferent response to P2X receptor activation in the mouse urinary bladder

    Get PDF
    Both TRPV1 and P2X receptors present on bladder sensory nerve fibres have been implicated in mechanosensation during bladder filling. The aim of this study was to determine possible interactions between these receptors in modulating afferent nerve activity. In wildtype (TRPV1+/+) and TRPV1 knockout (TRPV1−/−) mice, bladder afferent nerve activity, intravesical pressure, and luminal ATP and acetylcholine levels were determined and also intracellular calcium responses of dissociated pelvic DRG neurones and primary mouse urothelial cells (PMUCs). Bladder afferent nerve responses to the purinergic agonist αβMethylene-ATP were depressed in TRPV1−/− mice (p ≤ 0.001) and also in TRPV1+/+ mice treated with the TRPV1-antagonist capsazepine (10 µM; p ≤ 0.001). These effects were independent of changes in bladder compliance or contractility. Responses of DRG neuron to αβMethylene-ATP (30 µM) were unchanged in the TRPV1−/− mice, but the proportion of responsive neurones was reduced (p ≤ 0.01). Although the TRPV1 agonist capsaicin (1 µM) did not evoke intracellular responses in PMUCs from TRPV1+/+ mice, luminal ATP levels were reduced in the TRPV1−/− mice (p ≤ 0.001) compared to wildtype. TRPV1 modulates P2X mediated afferent responses and provides a mechanistic basis for the decrease in sensory symptoms observed following resiniferatoxin and capsaicin treatment for lower urinary tract symptoms

    Inhibition of SOC/Ca2+/NFAT pathway is involved in the anti-proliferative effect of sildenafil on pulmonary artery smooth muscle cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sildenafil, a potent phosphodiesterase type 5 (PDE5) inhibitor, has been proposed as a treatment for pulmonary arterial hypertension (PAH). The mechanism of its anti-proliferative effect on pulmonary artery smooth muscle cells (PASMC) is unclear. Nuclear translocation of nuclear factor of activated T-cells (NFAT) is thought to be involved in PASMC proliferation and PAH. Increase in cytosolic free [Ca<sup>2+</sup>] ([Ca<sup>2+</sup>]<sub>i</sub>) is a prerequisite for NFAT nuclear translocation. Elevated [Ca<sup>2+</sup>]<sub>i </sub>in PASMC of PAH patients has been demonstrated through up-regulation of store-operated Ca<sup>2+ </sup>channels (SOC) which is encoded by the transient receptor potential (TRP) channel protein. Thus we investigated if: 1) up-regulation of TRPC1 channel expression which induces enhancement of SOC-mediated Ca<sup>2+ </sup>influx and increase in [Ca<sup>2+</sup>]<sub>i </sub>is involved in hypoxia-induced PASMC proliferation; 2) hypoxia-induced promotion of [Ca<sup>2+</sup>]<sub>i </sub>leads to nuclear translocation of NFAT and regulates PASMC proliferation and TRPC1 expression; 3) the anti-proliferative effect of sildenafil is mediated by inhibition of this SOC/Ca<sup>2+</sup>/NFAT pathway.</p> <p>Methods</p> <p>Human PASMC were cultured under hypoxia (3% O<sub>2</sub>) with or without sildenafil treatment for 72 h. Cell number and cell viability were determined with a hemocytometer and MTT assay respectively. [Ca<sup>2+</sup>]<sub>i </sub>was measured with a dynamic digital Ca<sup>2+ </sup>imaging system by loading PASMC with fura 2-AM. TRPC1 mRNA and protein level were detected by RT-PCR and Western blotting respectively. Nuclear translocation of NFAT was determined by immunofluoresence microscopy.</p> <p>Results</p> <p>Hypoxia induced PASMC proliferation with increases in basal [Ca<sup>2+</sup>]<sub>i </sub>and Ca<sup>2+ </sup>entry via SOC (SOCE). These were accompanied by up-regulation of TRPC1 gene and protein expression in PASMC. NFAT nuclear translocation was significantly enhanced by hypoxia, which was dependent on SOCE and sensitive to SOC inhibitor SKF96365 (SKF), as well as cGMP analogue, 8-brom-cGMP. Hypoxia-induced PASMC proliferation and TRPC1 up-regulation were inhibited by SKF and NFAT blocker (VIVIT and Cyclosporin A). Sildenafil treatment ameliorated hypoxia-induced PASMC proliferation and attenuated hypoxia-induced enhancement of basal [Ca<sup>2+</sup>]<sub>i</sub>, SOCE, up-regulation of TRPC1 expression, and NFAT nuclear translocation.</p> <p>Conclusion</p> <p>The SOC/Ca<sup>2+</sup>/NFAT pathway is, at least in part, a downstream mediator for the anti-proliferative effect of sildenafil, and may have therapeutic potential for PAH treatment.</p

    NFAT regulation in smooth muscle

    No full text
    First identified in activated T cells, the calcium (Ca2+)-dependent transcription factor, nuclear factor of activated T cells (NFAT), has since been shown to play a role in nonimmune cells, including cells of the cardiovascular system. In arterial smooth muscle, the diverse array of calcium-signaling modalities, the functional interplay between smooth muscle and endothelial cells, and the influence of intravascular pressure on calcium and other signaling pathways creates a calcium-regulatory environment that is arguably unique. This review focuses on mechanisms that control the initial Ca2+/calcineurin-dependent events in NFAT activation, with a particular emphasis on NFAT regulation in native vascular smooth muscle. Also addressed is the role of additional mechanisms that act to modulate calcineurin-dependent NFAT nuclear import/export, mechanisms that may have particular relevance in this tissue. (C) 2003, Elsevier Science Inc

    Ion Channels and Vascular Diseases

    No full text

    Structure of the Human Factor VIII C2 Domain in Complex with the 3E6 Inhibitory Antibody

    Get PDF
    Blood coagulation factor VIII is a glycoprotein cofactor that is essential for the intrinsic pathway of the blood coagulation cascade. Inhibitory antibodies arise either spontaneously or in response to therapeutic infusion of functional factor VIII into hemophilia A patients, many of which are specific to the factor VIII C2 domain. The immune response is largely parsed into “classical” and “non-classical” inhibitory antibodies, which bind to opposing faces cooperatively. In this study, the 2.61 Å resolution structure of the C2 domain in complex with the antigen-binding fragment of the 3E6 classical inhibitory antibody is reported. The binding interface is largely conserved when aligned with the previously determined structure of the C2 domain in complex with two antibodies simultaneously. Further inspection of the B factors for the C2 domain in various X-ray crystal structures indicates that 3E6 antibody binding decreases the thermal motion behavior of surface loops in the C2 domain on the opposing face, thereby suggesting that cooperative antibody binding is a dynamic effect. Understanding the structural nature of the immune response to factor VIII following hemophilia A treatment will help lead to the development of better therapeutic reagents
    corecore