10,173 research outputs found
Optimizing a PCR protocol for cpn60-based microbiome profiling of samples variously contaminated with host genomic DNA.
The current recommended protocol for chaperonin-60 (cpn60) universal target based microbiome profiling includes universal PCR of microbiome samples across an annealing temperature gradient to maximize the diversity of sequences amplified. However, the value of including this gradient approach has not been formally evaluated since the optimization of a modified universal PCR primer cocktail for cpn60 PCR. PCR conditions that maximize representation of the microbiome while minimizing PCR-associated distortion of the community structure, especially in samples containing large amounts of host genomic DNA are critical. The goal of this study was to measure the effects of PCR annealing temperature and the ratio of host to bacterial DNA on the outcome of microbiota analysis, using pig microbiota as a model environment.Six samples were chosen with an anticipated range of ratios of pig to bacterial genomic DNA, and universal cpn60 PCR amplification with an annealing temperature gradient was used to create libraries for pyrosequencing, resulting in 426,477 sequences from the six samples. The sequences obtained were classified as target (cpn60) or non-target based on the percent identity of their closest match to the cpnDB reference database, and target sequences were further processed to create microbiome profiles for each sample at each annealing temperature. Annealing temperature affected the amount of PCR product generated, with more product generated at higher temperatures. Samples containing proportionally more host genomic DNA yielded more non-target reads, especially at lower annealing temperatures. However, microbiome composition for each sample across the annealing temperature gradient remained consistent at both the phylum and operational taxonomic unit levels. Although some microbial sequences were detected at only one annealing temperature, these sequences accounted for a minority of the total microbiome.These results indicate that PCR annealing temperature does have an affect on cpn60 based microbiome profiles, but that most of the differences are due to differences in detection of low abundance sequences. Higher annealing temperatures resulted in larger amounts of PCR product and lower amounts of non-target sequence amplification, especially in samples containing proportionally large amounts of host DNA. Taken together these results provide important information to guide decisions about experimental design for cpn60 based microbiome studies
Characterization of the fecal microbiota of pigs before and after inoculation with "Brachyspira hampsonii".
Brachyspira hampsonii causes disease indistinguishable from swine dysentery, and the structure of the intestinal microbiome likely plays a role in determining susceptibility of individual pigs to infection and development of clinical disease. The objectives of the current study were to determine if the pre-inoculation fecal microbiota differed between inoculated pigs that did (INOC MH) or did not (INOC non-MH) develop mucohaemorrhagic diarrhea following challenge with B. hampsonii , and to quantify changes in the structure of the microbiome following development of clinical disease. Fecal microbiota profiles were generated based on amplification and sequencing of the cpn60 universal target sequence from 89 samples from 18 pigs collected at -8, -5, -3 and 0 days post-inoculation, and at termination. No significant differences in richness, diversity or taxonomic composition distinguished the pre-inoculation microbiomes of INOC MH and INOC non-MH pigs. However, the development of bloody diarrhea in inoculated pigs was associated with perturbation of the microbiota relative to INOC non-MH or sham-inoculated control pigs. Specifically, the fecal microbiota of INOC MH pigs was less dense (fewer total 16S rRNA copies per gram of feces), and had a lower Bacteroidetes:Firmicutes ratio. Further investigation of the potential long-term effects of Brachyspira disease on intestinal health and performance is warranted
Fermentation kinetics including product and substrate inhibitions plus biomass death: a mathematical analysis
Fermentation is generally modelled by kinetic equations giving the time
evolutions for biomass, substrate, and product concentrations. Although these
equations can be solved analytically in simple cases if substrate/product
inhibition and biomass death are included, they are typically solved
numerically. We propose an analytical treatment of the kinetic equations
--including cell death and an arbitrary number of inhibitions-- in which
constant yield needs not be assumed. Equations are solved in phase space, i.e.
the biomass concentration is written explicitly as a function of the substrate
concentration.Comment: 4 pages, 4 figure
mPUMA: a computational approach to microbiota analysis by de novo assembly of operational taxonomic units based on protein-coding barcode sequences.
BACKGROUND: Formation of operational taxonomic units (OTU) is a common approach to data aggregation in microbial ecology studies based on amplification and sequencing of individual gene targets. The de novo assembly of OTU sequences has been recently demonstrated as an alternative to widely used clustering methods, providing robust information from experimental data alone, without any reliance on an external reference database. RESULTS: Here we introduce mPUMA (microbial Profiling Using Metagenomic Assembly, http://mpuma.sourceforge.net), a software package for identification and analysis of protein-coding barcode sequence data. It was developed originally for Cpn60 universal target sequences (also known as GroEL or Hsp60). Using an unattended process that is independent of external reference sequences, mPUMA forms OTUs by DNA sequence assembly and is capable of tracking OTU abundance. mPUMA processes microbial profiles both in terms of the direct DNA sequence as well as in the translated amino acid sequence for protein coding barcodes. By forming OTUs and calculating abundance through an assembly approach, mPUMA is capable of generating inputs for several popular microbiota analysis tools. Using SFF data from sequencing of a synthetic community of Cpn60 sequences derived from the human vaginal microbiome, we demonstrate that mPUMA can faithfully reconstruct all expected OTU sequences and produce compositional profiles consistent with actual community structure. CONCLUSIONS: mPUMA enables analysis of microbial communities while empowering the discovery of novel organisms through OTU assembly
Characterization of the upper respiratory tract microbiomes of patients with pandemic H1N1 influenza.
The upper respiratory tract microbiome has an important role in respiratory health. Influenza A is a common viral infection that challenges that health, and a well-recognized sequela is bacterial pneumonia. Given this connection, we sought to characterize the upper respiratory tract microbiota of individuals suffering from the pandemic H1N1 influenza A outbreak of 2009 and determine if microbiome profiles could be correlated with patient characteristics. We determined the microbial profiles of 65 samples from H1N1 patients by cpn60 universal target amplification and sequencing. Profiles were examined at the phylum and nearest neighbor species levels using the characteristics of patient gender, age, originating health authority, sample type and designation (STAT/non-STAT). At the phylum level, Actinobacteria-, Firmicutes- and Proteobacteria-dominated microbiomes were observed, with none of the patient characteristics showing significant profile composition differences. At the nearest neighbor species level, the upper respiratory tract microbiomes were composed of 13-20 species and showed a trend towards increasing diversity with patient age. Interestingly, at an individual level, most patients had one to three organisms dominant in their microbiota. A limited number of discrete microbiome profiles were observed, shared among influenza patients regardless of patient status variables. To assess the validity of analyses derived from sequence read abundance, several bacterial species were quantified by quantitative PCR and compared to the abundance of cpn60 sequence read counts obtained in the study. A strong positive correlation between read abundance and absolute bacterial quantification was observed. This study represents the first examination of the upper respiratory tract microbiome using a target other than the 16S rRNA gene and to our knowledge, the first thorough examination of this microbiome during a viral infection
Measuring coverage in MNCH: indicators for global tracking of newborn care.
Neonatal mortality accounts for 43% of under-five mortality. Consequently, improving newborn survival is a global priority. However, although there is increasing consensus on the packages and specific interventions that need to be scaled up to reduce neonatal mortality, there is a lack of clarity on the indicators needed to measure progress. In 2008, in an effort to improve newborn survival, the Newborn Indicators Technical Working Group (TWG) was convened by the Saving Newborn Lives program at Save the Children to provide a forum to develop the indicators and standard measurement tools that are needed to measure coverage of key newborn interventions. The TWG, which included evaluation and measurement experts, researchers, individuals from United Nations agencies and non-governmental organizations, and donors, prioritized improved consistency of measurement of postnatal care for women and newborns and of immediate care behaviors and practices for newborns. In addition, the TWG promoted increased data availability through inclusion of additional questions in nationally representative surveys, such as the United States Agency for International Development-supported Demographic and Health Surveys and the United Nations Children's Fund-supported Multiple Indicator Cluster Surveys. Several studies have been undertaken that have informed revisions of indicators and survey tools, and global postnatal care coverage indicators have been finalized. Consensus has been achieved on three additional indicators for care of the newborn after birth (drying, delayed bathing, and cutting the cord with a clean instrument), and on testing two further indicators (immediate skin-to-skin care and applications to the umbilical cord). Finally, important measurement gaps have been identified regarding coverage data for evidence-based interventions, such as Kangaroo Mother Care and care seeking for newborn infection
Predicting Phenotypic Diversity and the Underlying Quantitative Molecular Transitions
During development, signaling networks control the formation of multicellular patterns. To what extent quantitative fluctuations in these complex networks may affect multicellular phenotype remains unclear. Here, we describe a computational approach to predict and analyze the phenotypic diversity that is accessible to a developmental signaling network. Applying this framework to vulval development in C. elegans, we demonstrate that quantitative changes in the regulatory network can render ~500 multicellular phenotypes. This phenotypic capacity is an order-of-magnitude below the theoretical upper limit for this system but yet is large enough to demonstrate that the system is not restricted to a select few outcomes. Using metrics to gauge the robustness of these phenotypes to parameter perturbations, we identify a select subset of novel phenotypes that are the most promising for experimental validation. In addition, our model calculations provide a layout of these phenotypes in network parameter space. Analyzing this landscape of multicellular phenotypes yielded two significant insights. First, we show that experimentally well-established mutant phenotypes may be rendered using non-canonical network perturbations. Second, we show that the predicted multicellular patterns include not only those observed in C. elegans, but also those occurring exclusively in other species of the Caenorhabditis genus. This result demonstrates that quantitative diversification of a common regulatory network is indeed demonstrably sufficient to generate the phenotypic differences observed across three major species within the Caenorhabditis genus. Using our computational framework, we systematically identify the quantitative changes that may have occurred in the regulatory network during the evolution of these species. Our model predictions show that significant phenotypic diversity may be sampled through quantitative variations in the regulatory network without overhauling the core network architecture. Furthermore, by comparing the predicted landscape of phenotypes to multicellular patterns that have been experimentally observed across multiple species, we systematically trace the quantitative regulatory changes that may have occurred during the evolution of the Caenorhabditis genus
Four Generations: SUSY and SUSY Breaking
We revisit four generations within the context of supersymmetry. We compute
the perturbativity limits for the fourth generation Yukawa couplings and show
that if the masses of the fourth generation lie within reasonable limits of
their present experimental lower bounds, it is possible to have perturbativity
only up to scales around 1000 TeV. Such low scales are ideally suited to
incorporate gauge mediated supersymmetry breaking, where the mediation scale
can be as low as 10-20 TeV. The minimal messenger model, however, is highly
constrained. While lack of electroweak symmetry breaking rules out a large part
of the parameter space, a small region exists, where the fourth generation stau
is tachyonic. General gauge mediation with its broader set of boundary
conditions is better suited to accommodate the fourth generation.Comment: 27 pages, 5 figure
Spin qubits with electrically gated polyoxometalate molecules
Spin qubits offer one of the most promising routes to the implementation of
quantum computers. Very recent results in semiconductor quantum dots show that
electrically-controlled gating schemes are particularly well-suited for the
realization of a universal set of quantum logical gates. Scalability to a
larger number of qubits, however, remains an issue for such semiconductor
quantum dots. In contrast, a chemical bottom-up approach allows one to produce
identical units in which localized spins represent the qubits. Molecular
magnetism has produced a wide range of systems with tailored properties, but
molecules permitting electrical gating have been lacking. Here we propose to
use the polyoxometalate [PMo12O40(VO)2]q-, where two localized spins-1/2 can be
coupled through the electrons of the central core. Via electrical manipulation
of the molecular redox potential, the charge of the core can be changed. With
this setup, two-qubit gates and qubit readout can be implemented.Comment: 9 pages, 6 figures, to appear in Nature Nanotechnolog
Tailored education for older patients to facilitate engagement in falls prevention strategies after hospital discharge—A pilot randomized controlled trial
Background
The aims of the study were to evaluate the effect of providing tailored falls prevention education in hospital on: i) engagement in targeted falls prevention behaviors in the month after discharge: ii) patients’ self-perceived risk and knowledge about falls and falls prevention strategies after receiving the education. Methods
A pilot randomized controlled trial (n = 50): baseline and outcome assessments conducted by blinded researchers. Participants: hospital inpatients 60 years or older, discharged to the community. Participants were randomized into two groups. The intervention was a tailored education package consisting of multimedia falls prevention information with trained health professional follow-up, delivered in addition to usual care. Outcome measures were engagement in falls prevention behaviors in the month after discharge measured at one month after discharge with a structured survey, and participants’ knowledge, confidence and motivation levels before and after receiving the education. The feasibility of providing the intervention was examined and falls outcomes (falls, fall-related injuries) were also collected. Results
Forty-eight patients (98%) provided follow-up data. The complete package was provided to 21 (84%) intervention group participants. Participants in the intervention group were significantly more likely to plan how to safely restart functional activities [Adjusted odds ratio 3.80, 95% CI (1.07, 13.52), p = 0.04] and more likely to complete other targeted behaviors such as completing their own home exercise program [Adjusted odds ratio 2.76, 95% CI (0.72, 10.50), p = 0.14] than the control group. The intervention group was significantly more knowledgeable, confident and motivated to engage in falls prevention strategies after receiving the education than the control group. There were 23 falls (n = 5 intervention; n = 18 control) and falls rates were 5.4/1000 patient days (intervention); 18.7/1000 patient days (control). Conclusion
This tailored education was received positively by older people, resulted in increased engagement in falls prevention strategies after discharge and is feasible to deliver to older hospital patients. Trial registration
The study was registered with the Australian New Zealand Clinical Trials Registry; ACTRN12611000963921 on 8th November 2011
- …
