1,582 research outputs found

    A game for all shapes and sizes? Changes in anthropometric and performance measures of elite professional rugby union players 1999-2018

    Get PDF
    Background: Rugby union player size has increased since the game turned professional in 1995. Changes in physical and performance capability over this period have yet to be fully described. Hypothesis: Increases in player momentum would result from changes in body mass. Methods: Within-player rates of change in anthropometric and kinetic variables with season played were sampled in three successively studied professional rugby union club cohorts playing at the highest level of European competition between 1999-2019. Data comprised 910 seasons of observation for 291 elite male players. Most players had 2, 3 or 4 seasons of observation. Mixed-effects modelling distinguished changes independent of position played, club and international status. Results: With each season played, player body mass, fat-free mass, and maximum speed increased significantly, while percent fat decreased. The mean maximal velocity of a rugby player in 1999 was 8.2 (±0.18) m/s, which in 2019 had risen to 9.1 (±0.10) m/s. Player’s momentum in 2019 was 14% more than those playing in 1999. In the Front Five, momentum increased in this period by more than 25%, mainly driven by greater running speed, disproving our hypothesis. Conclusions: The momentum of players, particularly forwards, increased markedly over 20 seasons of professional rugby. The resulting forces generated in collisions are thus significantly greater, although these may be mitigated by better player conditioning. Proactive regulation to address player safety may be required to address the changing nature of anthropometric measures and physical performance, minimising injury rates and potential long-term sequelae

    Void Growth in BCC Metals Simulated with Molecular Dynamics using the Finnis-Sinclair Potential

    Full text link
    The process of fracture in ductile metals involves the nucleation, growth, and linking of voids. This process takes place both at the low rates involved in typical engineering applications and at the high rates associated with dynamic fracture processes such as spallation. Here we study the growth of a void in a single crystal at high rates using molecular dynamics (MD) based on Finnis-Sinclair interatomic potentials for the body-centred cubic (bcc) metals V, Nb, Mo, Ta, and W. The use of the Finnis-Sinclair potential enables the study of plasticity associated with void growth at the atomic level at room temperature and strain rates from 10^9/s down to 10^6/s and systems as large as 128 million atoms. The atomistic systems are observed to undergo a transition from twinning at the higher end of this range to dislocation flow at the lower end. We analyze the simulations for the specific mechanisms of plasticity associated with void growth as dislocation loops are punched out to accommodate the growing void. We also analyse the process of nucleation and growth of voids in simulations of nanocrystalline Ta expanding at different strain rates. We comment on differences in the plasticity associated with void growth in the bcc metals compared to earlier studies in face-centred cubic (fcc) metals.Comment: 24 pages, 12 figure

    The Cosmic Microwave Background and Particle Physics

    Get PDF
    In forthcoming years, connections between cosmology and particle physics will be made increasingly important with the advent of a new generation of cosmic microwave background (CMB) experiments. Here, we review a number of these links. Our primary focus is on new CMB tests of inflation. We explain how the inflationary predictions for the geometry of the Universe and primordial density perturbations will be tested by CMB temperature fluctuations, and how the gravitational waves predicted by inflation can be pursued with the CMB polarization. The CMB signatures of topological defects and primordial magnetic fields from cosmological phase transitions are also discussed. Furthermore, we review current and future CMB constraints on various types of dark matter (e.g. massive neutrinos, weakly interacting massive particles, axions, vacuum energy), decaying particles, the baryon asymmetry of the Universe, ultra-high-energy cosmic rays, exotic cosmological topologies, and other new physics.Comment: 43 pages. To appear in Annual Reviews of Nuclear and Particle Scienc

    Predicting Phenotypic Diversity and the Underlying Quantitative Molecular Transitions

    Get PDF
    During development, signaling networks control the formation of multicellular patterns. To what extent quantitative fluctuations in these complex networks may affect multicellular phenotype remains unclear. Here, we describe a computational approach to predict and analyze the phenotypic diversity that is accessible to a developmental signaling network. Applying this framework to vulval development in C. elegans, we demonstrate that quantitative changes in the regulatory network can render ~500 multicellular phenotypes. This phenotypic capacity is an order-of-magnitude below the theoretical upper limit for this system but yet is large enough to demonstrate that the system is not restricted to a select few outcomes. Using metrics to gauge the robustness of these phenotypes to parameter perturbations, we identify a select subset of novel phenotypes that are the most promising for experimental validation. In addition, our model calculations provide a layout of these phenotypes in network parameter space. Analyzing this landscape of multicellular phenotypes yielded two significant insights. First, we show that experimentally well-established mutant phenotypes may be rendered using non-canonical network perturbations. Second, we show that the predicted multicellular patterns include not only those observed in C. elegans, but also those occurring exclusively in other species of the Caenorhabditis genus. This result demonstrates that quantitative diversification of a common regulatory network is indeed demonstrably sufficient to generate the phenotypic differences observed across three major species within the Caenorhabditis genus. Using our computational framework, we systematically identify the quantitative changes that may have occurred in the regulatory network during the evolution of these species. Our model predictions show that significant phenotypic diversity may be sampled through quantitative variations in the regulatory network without overhauling the core network architecture. Furthermore, by comparing the predicted landscape of phenotypes to multicellular patterns that have been experimentally observed across multiple species, we systematically trace the quantitative regulatory changes that may have occurred during the evolution of the Caenorhabditis genus

    Using interpretative phenomenological analysis to inform physiotherapy practice: An introduction with reference to the lived experience of cerebellar ataxia

    Get PDF
    The attached file is a pre-published version of the full and final paper which can be found at the link below.This article has been made available through the Brunel Open Access Publishing Fund.Qualitative research methods that focus on the lived experience of people with health conditions are relatively underutilised in physiotherapy research. This article aims to introduce interpretative phenomenological analysis (IPA), a research methodology oriented toward exploring and understanding the experience of a particular phenomenon (e.g., living with spinal cord injury or chronic pain, or being the carer of someone with a particular health condition). Researchers using IPA try to find out how people make sense of their experiences and the meanings they attach to them. The findings from IPA research are highly nuanced and offer a fine grained understanding that can be used to contextualise existing quantitative research, to inform understanding of novel or underresearched topics or, in their own right, to provoke a reappraisal of what is considered known about a specified phenomenon. We advocate IPA as a useful and accessible approach to qualitative research that can be used in the clinical setting to inform physiotherapy practice and the development of services from the perspective of individuals with particular health conditions.This article is available through the Brunel Open Access Publishing Fund

    A centrality measure for cycles and subgraphs II

    Get PDF
    In a recent work we introduced a measure of importance for groups of vertices in a complex network. This centrality for groups is always between 0 and 1 and induces the eigenvector centrality over vertices. Furthermore, its value over any group is the fraction of all network flows intercepted by this group. Here we provide the rigorous mathematical constructions underpinning these results via a semi-commutative extension of a number theoretic sieve. We then established further relations between the eigenvector centrality and the centrality proposed here, showing that the latter is a proper extension of the former to groups of nodes. We finish by comparing the centrality proposed here with the notion of group-centrality introduced by Everett and Borgatti on two real-world networks: the Wolfe’s dataset and the protein-protein interaction network of the yeast Saccharomyces cerevisiae. In this latter case, we demonstrate that the centrality is able to distinguish protein complexe

    Is there an impact of public smoking bans on self-reported smoking status and exposure to secondhand smoke?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Implementation of smoke free policies has potentially substantial effects on health by reducing secondhand smoke exposure. However little is known about whether the introduction of anti-smoking legislation translates into decreased secondhand smoke exposure. We examined whether smoking bans impact rates of secondhand smoke exposure in public places and rates of complete workplace smoking restriction.</p> <p>Methods</p> <p>Canadian Community Health Survey was used to obtain secondhand smoking exposure rates in 15 Ontario municipalities. Data analysis included descriptive summaries and 95% confidence intervals were calculated and compared across groups</p> <p>Results</p> <p>Across all studied municipalities, secondhand smoke exposure in public places decreased by 4.7% and workplace exposure decreased by 2.3% between the 2003 and 2005 survey years. The only jurisdiction to implement a full ban from no previous ban was also the only setting that experienced significant decreases in both individual exposure to secondhand smoke in a public place (-17.3%, 95% CI -22.8, -11.8) and workplace exposure (-18.1%, 95% CI -24.9, -11.3). Exposures in vehicles and homes declined in almost all settings over time.</p> <p>Conclusions</p> <p>Implementation of a full smoking ban was associated with the largest decreases in secondhand smoke exposure while partial bans and changes in existing bans had inconsistent effects. In addition to decreasing exposure in public places as would be expected from legislation, bans may have additional benefits by decreasing rates of current smokers and decreasing exposures to secondhand smoke in private settings.</p

    The phases of deuterium at extreme densities

    Full text link
    We consider deuterium compressed to higher than atomic, but lower than nuclear densities. At such densities deuterium is a superconducting quantum liquid. Generically, two superconducting phases compete, a "ferromagnetic" and a "nematic" one. We provide a power counting argument suggesting that the dominant interactions in the deuteron liquid are perturbative (but screened) Coulomb interactions. At very high densities the ground state is determined by very small nuclear interaction effects that probably favor the ferromagnetic phase. At lower densities the symmetry of the theory is effectively enhanced to SU(3), and the quantum liquid enters a novel phase, neither ferromagnetic nor nematic. Our results can serve as a starting point for investigations of the phase dynamics of deuteron liquids, as well as exploration of the stability and dynamics of the rich variety of topological objects that may occur in phases of the deuteron quantum liquid, which range from Alice strings to spin skyrmions to Z_2 vortices.Comment: 9 pages, 6 figures; v2: fixed typo
    • …
    corecore