
This is a repository copy of A centrality measure for cycles and subgraphs II.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/132002/

Version: Published Version

Article:

Giscard, Pierre-Louis and Wilson, Richard Charles orcid.org/0000-0001-7265-3033 (2018) 
A centrality measure for cycles and subgraphs II. Applied Network Science. ISSN 2364-
8228 

https://doi.org/10.1007/s41109-018-0064-5

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Applied Network ScienceGiscard and Wilson Applied Network Science  (2018) 3:9 

https://doi.org/10.1007/s41109-018-0064-5

RESEARCH Open Access

A centrality measure for cycles and
subgraphs II
Pierre-Louis Giscard* and Richard C. Wilson

*Correspondence:

pierre-louis.giscard@york.ac.uk

Department of Computer Science,

University of York, Deramore Lane,

Heslington, York, YO10 5GH, UK

Abstract

In a recent work we introduced a measure of importance for groups of vertices in a

complex network. This centrality for groups is always between 0 and 1 and induces the

eigenvector centrality over vertices. Furthermore, its value over any group is the

fraction of all network flows intercepted by this group. Here we provide the rigorous

mathematical constructions underpinning these results via a semi-commutative

extension of a number theoretic sieve. We then established further relations between

the eigenvector centrality and the centrality proposed here, showing that the latter is a

proper extension of the former to groups of nodes. We finish by comparing the

centrality proposed here with the notion of group-centrality introduced by Everett and

Borgatti on two real-world networks: the Wolfe’s dataset and the protein-protein

interaction network of the yeast Saccharomyces cerevisiae. In this latter case, we

demonstrate that the centrality is able to distinguish protein complexes

Keywords: Centrality of groups of nodes, Protein complexes, Eigenvector centrality,

Group-centrality

Introduction

Context

In our previous work on the subject, we argued the need to go beyond vertices when

analysing complex networks. In fact, remarks to this end can be found scattered in the liter-

ature (Contreras and Fagiolo 2014; Estrada and Rodríguez-Velázquez 2005; Milo and et al

2002; Mukhtar and et al 2011; Yeger-Lotem and et al 2004). For example, studies of gene

regulatory networks have shown that “motif-based centralities outperforms other meth-

ods” and can discern interesting network features not grasped by more traditional vertex

centralities (Koschützki et al. 2007; Koschützki and Schreiber 2008). Another example is

provided by the notion of protein essentiality, a property now understood to be deter-

mined at the level of protein complexes, that is groups of proteins in the protein-protein

interaction network (PPI) rather than at the level of individual proteins (Hart et al. 2007;

Ryan et al. 2013). In addition, further biological properties have been tied to ensembles

of genes or proteins, e.g. the notion of synthetic lethality, where the simultaneous deacti-

vation of two genes is lethal while the separate deactivation of each is not (Nijman 2011).

Since measures of importance for nodes constitute a key tool in the study of complex net-

works, it is only logical to expect that similar tools for ranking groups of vertices could

find widespread applications throughout network analysis.
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In this spirit, we proposed in (Giscard and Wilson 2017b) a measure of importance

for groups of nodes (henceforth called “subgraphs"), that has the following desirable

properties:

1. Provided the edge weights are non-negative, the centrality c(H) of a subgraph H is

always between 0 and 1.

2. The precise value c(H) taken by the centrality on a subgraph H is the fraction of all

network flows intercepted by H.

3. For subgraphs comprising a single node H ≡ {i}, the centrality measure c({i})

yields the same ranking than the eigenvector centrality. In other terms, it induces

the eigenvector centrality over vertices.

4. Computationally, c(H) costs no more to compute per subgraph H than ordinary

vertex-centralities. What is computationally costly however, is to compute it over

all subgraphs.

In (Giscard and Wilson 2017b), we have shown, by analysing real-world networks

from econometry and biology, that c(.) performs better than centralities defined from

naive sums of vertex-centralities. Concretely, we demonstrated that subgraph centrali-

ties defined from sums of the resolvent, exponential and eigenvector centralities failed to

account for even the dominant events affecting input-output economic networks. In biol-

ogy, we used c(.) to construct a model of protein-targeting by pathogens that achieved a

25% improvement over the state of the art one.1

In this work, we establish further properties of the centrality measure c(.) and present

its rigorous mathematical underpinnings.We also compare this centrality with the notion

of group-centrality presented by Everett and Borgatti in (Everett and Borgatti 1999) on

real-world networks.

Notations and centrality definition

The measure of cycle and subgraph centrality we propose is rooted in recent advances

in the algebraic combinatorics of walks on graphs. Here we only define the few concepts

from this background that are necessary to comprehend the centrality measure.

We consider a finite network G = (V ; E) with N = |V| nodes and M = |E | edges and

which may be weighted and directed. The adjacency matrix of G is denoted AG or simply

A. If G is weighted then the entry Aij is the weight of the edge eij from i to j if this edge

exists, and 0 otherwise.

A induced subgraph H of G, also called simply a subgraph of G and denoted H ≺ G,

is a set of vertices VH ⊆ V together with the set of all edges linking these vertices in G,

EH = {eij ∈ E : i, j ∈ VH}. The subgraphs considered in this article are not necessarily

connected.

A walk w of length ℓ(w) from vi to vj on G is a sequence w = eii1ei1i2 · · · eiℓ−1j of ℓ

contiguous edges. The walk w is open if i �= j and closed otherwise.

A simple cycle, also known in the literature under the names loop, cycle, elementary

circuit and self-avoiding polygon, is a closed walk w = eii1ei1i2 · · · eiℓ−1i which does not

cross the same vertex twice, that is, the indices i, i1, . . . , iℓ−1 are all different.

We now recall the definition of the centrality for cycles and subgraphs, introduced in

(Giscard and Wilson 2017b).
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Definition 1 (Centrality). Let G be a (weighted di)graph and let A be the adjacency matrix

of G, including weights if any. Define λ the maximum eigenvalue of A. For any cycle γ , let

AG\γ be the adjacency matrix of the graph G where all vertices visited by γ and the edges

adjacent to them have been removed. Then we define the centrality c(γ ) of the cycle γ as

c(γ ) := det

(

I −
1

λ
AG\γ

)

.

More generally, for any non-empty subgraph H of G, we define the centrality of H as

c(H) := det

(

I −
1

λ
AG\H

)

.

The calculation of the centrality is illustrated on Fig. 1.

As we have shown in (Giscard andWilson 2017b), these centralities not only reflect the

relative importance of cycles or subgraphs, but their values have a precise meaning too.

Indeed, c(H) is the fraction of all information flows on the network that are intercepted

by the subgraphH. As such, and as long as the network has no negative edge-weights, the

centrality is always between 0 and 1, which is numerically advantageous,

0 ≤ c(H) ≤ 1.

Because it has a concrete real-world meaning as fraction of network flows, the value of

the centrality can be assessed with respect to external informations when available. More

generally, it enriches the analysis in that it does not only produce a ranking of groups

of nodes, but it also quantitatively ties these groups’ importance with an immediately

meaningful quantity, e.g. a fraction of capital flow, of successions of proteins interactions

or of social interactions depending on the context.

It the following section we give the full, rigorous mathematical proof of the main

theorem underpinning these results and which relates the centrality c(γ ) of a cycle γ

with network flows. This theorem was presented as Proposition 1 in (Giscard andWilson

2017b) but was only given a qualitative proof there, owing to length constraints. Note, we

focus on the centrality of simple cycles as it is precisely in this context that the rigorous

proof appears as an extension of a number theoretic sieve. The case of arbitrary subgraphs

is similar, and we operate with no loss of generality.

Fig. 1 Schematic representation of the calculation of a centrality. Left : full network G, with in black the group

of three vertices forming a triangle T, the centrality of which is desired. Right: graph G\T where all vertices

belonging to T have been removed. The matrix AG\T is the adjacency matrix of G\T
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Centrality and network flows: a rigorousmathematical proof

We first need to recall some combinatorial notions introduced in the context of the

extension of number theory satisfied by walks on graphs (Giscard and Rochet 2017).

The central objects of this earlier study are hikes, a hike h being an unordered collec-

tion of disjoint closed walks. Hikes can be also be seen as equivalence classes on words

W = γi1γi2 · · · γin over the alphabet of simple cycles γi of a graph. Two wordsW andW ′

are equivalent if and only if W ′ can be obtained from W through allowed permutations

of consecutive simple cycles. In this context, two simple cycles are allowed to commute if

and only if they are vertex disjoint V(γi) ∩ V(γj) = ∅ ⇐⇒ γiγj = γjγi.

For example, if γ1 and γ2 commute but neither commute with γ3, then γ1γ2 and γ2γ1

represent the same hike, but γ1γ3γ2 and γ2γ3γ1 are distinct hikes.

The letters γi1 , · · · , γin found in a hike h are called its prime divisors. This terminology is

due to the observation that simple cycles obey the defining property of prime elements in

the semi-commutative monoid H of hikes. In addition, they constitute the formal, semi-

commutative, extension of prime numbers (Giscard and Rochet 2017).

Two special types of hikes will be important for our purpose here:

A self-avoiding hike is a hike all prime factors of which commute with one another. In

other terms, it is collection of vertex-disjoint simple cycles.

A walk, defined earlier in section Notations and centrality definition, can be shown to

be hikes with a unique right prime divisor (Giscard and Rochet 2017), a characterisation

which is both necessary and sufficient so that any hike with a unique right prime divisor

is a walk.

It may perhaps help the reader’s intuition to know that in the extension of number the-

ory satisfied by hikes, hikes are the extension of the integers, self-avoiding hikes are the

square-free integers and walks are integers of the form pk , with p prime and k ∈ N.

Now we claim that the centrality c(γ ) of a simple cycle γ is exactly the fraction of all

hikes h (including infinite length ones) such that all right prime divisors of h intercept γ ,

that is no right prime divisor of h is vertex-disjoint with γ and commutes with it. This

later observation implies that γ is the only right prime divisor of hγ . Thus, the claim we

make is equivalent to stating that c(γ ) is the proportion of all hikes h such that hγ is a

walk.

Theorem 1. Let G be a finite (di)graph with adjacency matrix A and let γ be a simple

cycle on G. Then the total number nγ (k) of closed walks of length k on G with right prime

divisor γ is asymptotically equal to

nγ (k) ∼ c(γ )

(

1

det (I − zA)

)

[ k] , as k → ∞,

where (1/ det(I − zA)) [ k] stands for the coefficient of order k in the series 1/ det(I − zA).

Proof The proof relies on a very general combinatorial sieve. LetHℓ := {h ∈ H : ℓ(h) = ℓ}

be the set of hikes of length ℓ, P � H be a set of primes and Ps.a. the set of all self-

avoiding hikes constructible from P . Let S(Hℓ,P) be the number of hikes in Hℓ which

are not right-divisible by any prime of P . The semi-commutative extension of the sieve of

Erathostenes-Legendre yields

S(Hℓ,P) =
∑

d∈Ps.a.

μ(d)|Md|,
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with |Md| the number of multiples of d inHℓ. Furthermore, μ(d) is the Möbius function

on hikes, which is (Giscard and Rochet 2017)

μ(h) =

{

(−1)�(h), if h is self-avoiding,

0, otherwise,

where �(h) is the number of prime divisors of h, including multiplicity.

In order to progress, we seek a multiplicative function prob(.) such that |Md| =

prob(d)|Hℓ|+r(d), |Hℓ| := card(Hℓ). In this expression, prob(d) approximates the prob-

ability that a hike taken uniformly at random inHℓ is right-divisible by d. If edge-weights

are present, the hikes are not all uniformly probable but follow a distribution depen-

dent on these weights. In any case, no knowledge of this distribution is required here

and the meaning of prob(.) is only mentioned to help the reader understanding. Simi-

larly, m(d) = prob(d)|Hℓ| is the expected number of multiples of d in Hℓ. Finally, r(d)

is the associated error term, arising from the fact that |Md| is not truly multiplicative.

Supposing that we can identify them(.) function, we would obtain

S(Hℓ,P) =
∑

d∈Ps.a.

μ(d)m(d) +
∑

d∈Ps.a.

μ(d)r(d).

Contrary to number theory, the first term does not admit any simpler form without fur-

ther assumptions on P . This is because of the possible lack of commutativity between

some elements of P . We note however that since μ(d) is non-zero if and only if d is self-

avoiding, and since we have required that m(.) be multiplicative,2 then it follows that the

first term is entirely determined from the values ofm(.) over the primes of P .

We therefore turn to determiningm(γ ) for γ prime. The set of left-multiples of γ inH

is {hγ , h ∈ H}, which is in bijection with the set {h ∈ H, ℓ(h) ≥ ℓ(γ )}. Thus, the number

of left-multiples of γ inHℓ, is exactly |Hℓ−ℓ(γ )|. Then

prob(γ ) +
r(γ )

|Hℓ|
=

|Hℓ−ℓ(γ )|

|Hℓ|
.

Seeking the best possible probability function prob(γ ), let us suppose that once this func-

tion has been chosen, the error term of the above equation vanishes in the limit ℓ → ∞.

If this is true, then we obtain

prob(γ ) = lim
ℓ→∞

|Hℓ−ℓ(γ )|

|Hℓ|
.

In order to progress, we make an important observation regarding the cardinality of the

setHℓ:

Lemma 1. Let G be a finite (directed) graph. Let Hℓ := {h ∈ H : ℓ(h) = ℓ} be set of all

hikes on G of length ℓ. Then, there exists � ∈ R+ and a bounded function f : N �→ R such

that limℓ→∞ f (ℓ) exists and for ℓ ∈ N∗ we have exactly

|Hℓ| = �ℓf (ℓ).

If the absolute value of the largest eigenvalue λ of G has multiplicity g, then � = λg .

Proof This follows directly from the ordinary zeta function on hikes ζ(z) =

det (I − zA)−1, from which we have

|Hℓ| =

(

1

det (I − zA)

)

[ ℓ]=
∑

i1,··· , iN⊢ℓ

λ
i1
1 λ

i2
2 · · · λ

iN
N = λℓ

∑

i1,··· , iN⊢ℓ

λi1−ℓλ
i2
2 · · · λ

iN
N
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where the sums run over all positive values of ij ≥ 0 such that
∑

j ij = ℓ and λ ≡ λ1 is the

eigenvalue of the graph with the largest absolute value. We assume for the moment that λ

is unique and let f (ℓ) :=
∑

i1,··· , iN⊢ℓ λi1−ℓλ
i2
2 · · · λ

iN
N . This function is clearly bounded and

lim
ℓ→∞

f (ℓ) = lim
z→λ−1

(1 − zλ)ζ(z),

exists and is finite. If |λ| is not unique and has multiplicity g, then one should pick λg for

the scaling constant together with f (ℓ) = ζ(z)[ ℓ] λ−gℓ. In all cases the Lemma follows.

Proceeding with the result of Lemma 1 and assuming that the largest eigenvalue is

unique for simplicity, the existence of the limit for f gives

prob(γ ) = lim
ℓ→∞

λℓ−ℓ(γ )f (ℓ − ℓ(γ ))

λℓf (ℓ)
= λ−ℓ(γ ).

The prob(.) function is multiplicative over the primes–recall these are the simple

cycles–as desired. It yieldsm(γ ) = |Hℓ|λ
−ℓ(γ ) and the associated error term is

r(γ ) = |Hℓ−ℓ(γ )| − |Hℓ|λ
−ℓ(γ ) = λℓ−ℓ(γ )

(

f (ℓ − ℓ(γ )) − f (ℓ)
)

.

To establish the validity of these results, we need only verify that they are consistent

with our initial assumption concerning the error term, namely that r(γ )/|Hℓ| vanishes in

the limit ℓ → ∞. The existence of the limit of f implies limℓ→∞ |f (ℓ − ℓ(γ )) − f (ℓ)| = 0

and therefore that

lim
ℓ→∞

r(γ )

|Hℓ|
= lim

ℓ→∞
λ−ℓ(γ )

(

f (ℓ − ℓ(γ )) − f (ℓ)
)

= 0,

as required.

We are now ready to proceed with general self-avoiding hikes. Let d = γ1 · · · γq

be self-avoiding. Then since m is multiplicative and the length is totally additive over

H,m(d) =
∏

im(γi) = λ−
∑

i ℓ(γi) = λ−ℓ(d). The associated error term follows as

r(d) = |Hℓ−ℓ(d)| − |Hℓ|λ
−ℓ(d) = λℓ−ℓ(d)

(

f (ℓ − ℓ(d)) − f (ℓ)
)

.

Inserting these forms for m(d) and r(d) in the semi-commutative Erathostenes-

Legendre sieve yields the sieve formula

S(Hℓ,P) = |Hℓ|
∑

d∈Ps.a.

μ(d)λ−ℓ(d) + λℓ
∑

d∈Ps.a.

μ(d)λ−ℓ(d)
(

f (ℓ − ℓ(d)) − f (ℓ)
)

.

We can now progress much further on making an additional assumption concerning

the nature of the prime setP . We could consider two possibilities: i) thatP is the set of all

primes on an induced subgraphH ≺ G; or ii) thatP is a cut-off set, e.g. one disposes of all

the primes of length ℓ(γ ) ≤ �. Remarkably, in number theory, if i) is true then ii) is true

as well, and the sieve benefits from the advantages of both situations. In general however,

i) and ii) are not compatible and while ii) could be used to obtain direct estimates for the

number of primes of any length, a problem of great interest, we can show that this makes

the sieve NP-hard to implement. We therefore focus on the first situation.

Let H ≺ G be an induced subgraph of the graph G and let that P ≡ PH be the set of all

primes (that is simple cycles) on H. Remark that
∑

d∈Ps.a
H

μ(d)λ−ℓ(d) is therefore the sum

over all the self-avoiding hikes on H, each with coefficient μ(d)λ−ℓ(d). It follows (Giscard
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and Rochet 2017) that
∑

d∈Ps.a
H

μ(d)λ−ℓ(d) = det(I− λ−1AH). Concerning the error term,

λℓ
∑

d∈Ps.a.
H

μ(d)λ−ℓ(d)
(

f (ℓ − ℓ(d)) − f (ℓ)
)

,

we note that since H is finite,3 the above sum involves finitely many self-avoiding hikes d.

In addition, given that limℓ→∞ f (ℓ) exists by Lemma 1, limℓ→∞ f (ℓ − ℓ(d)) − f (ℓ) = 0

as long as ℓ(d) is finite, which is guaranteed by the finiteness of H. We have consequently

established that the error term comprises finitely many terms, each of which vanishes in

the ℓ → ∞ limit. As a corollary, the first term becomes asymptotically dominant:

S(Hℓ,P) ∼ |Hℓ| det
(

I − λ−1AH

)

as ℓ → ∞.

We canmake this more explicit on using the ordinary form of the zeta function on hikes

ζ(z) = 1/ det(I − zA). Then |Hℓ| = ζ(z)[ ℓ] is the coefficient of order ℓ in ζ(z), see also

the proof of Lemma 1.

Remark 1. The error term can be given a determinantal form upon using a finite difference

expansion of f or a Taylor series expansion of it if one smoothly extends its domain from N

to R. Writing

f (ℓ − ℓ(d)) − f (ℓ) =
∑

k≥1

∇k[ f ] (ℓ)

k!
(ℓ(d))(k) ,

with (a)(k) =
∏k−1

i=0 (a − i) the falling factorial and ∇ the backward differ-

ence operator. Now we use the properties of the Möbius function on hikes to write
∑

d∈Ps.a
H

μ(d) (ℓ(d))(k) z
ℓ(d) = ( d

dz )
k det(I − zAH) and finally

S(Hℓ,P) = |Hℓ| det

(

I −
1

λ
AH

)

+ λℓ
∑

k≥1

∇k[ f ] (ℓ)

k!
det(k)

(

I −
1

λ
AH

)

.

Here det(k)
(

I − 1
λ
AH

)

is a short-hand notation for
{

( d
dz )

k det(I − zAH)
}

∣

∣

z=λ−1 .

To conclude the proof of the Theorem, we now need only choose H correctly. Recall

that we seek to count those walks which are left-multiples of a chosen simple cycle γ . But

for w = hγ to be a walk, the hike h must be such that none of its right-prime divisor

commutes with γ . This way, γ is guaranteed to be the unique prime that can be put to

the right of h, hence the unique right-prime divisor of w, making w a walk. Then the sieve

must eliminate all hikes h with are left-multiples of primes commuting with γ . Observe

that all such primes are on H = G\γ .

Remark 2. The construction presented here is much more general than appears at first

glance. In particular, it can be extended to any additive function ρ : H �→ R overH other

than the length, provided an equivalent of Lemma 1 exists for ρ. Infinite graphs may also

be considered, provided additional constraints on the notion of determinant are met. These

generalisations have further applications which will be presented elsewhere.

Comparison with Everett and Borgatti’s group-centralities

Motivations and context

In our previous work on the centrality c(H) (Giscard and Wilson 2017b), we have

presented comparisons with centralities obtained forH upon summing up the vertex cen-

tralities of individual vertices involved in H. We have shown the comparative failure of

these approaches which could not, for example, detect even the major crisis affecting the
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insurance−finance−real-estate triad in input-output networks over the period 2000-2014

period.

In this section, we propose to further compare c(H) with the notion of group centrality

as it was introduced by Everett and Borgatti in 1999 (Everett and Borgatti 1999). The

authors of this study proposed to extend any vertex centrality to groups of vertices by

summing up the centrality of the vertices of the group as calculated on a graph where

other members of the group have been deleted. For example, the degree group centrality

of an ensemble H of vertices is equal to the external degree of H in G. Essentially, this

approach is expected to characterise the importance of the group with respect to the rest

of the graph but will not be sensitive to the inner structure of the group. As a consequence,

it is easy to construct synthetic graphs where group-centralities ’fail’ to identify a group

that should clearly be the most central. For example, a sparse graph with a single large

clique can be built such that this clique is less central than a small outlier group of nodes.

In our opinion however, these limitations are more theoretical than practical and it is

much more important to study the behaviour of the proposed measures on real-world

networks.

The centrality c(.) as an extension of the eigenvector centrality

Incidentally, Everett and Borgatti provide a strong motivation for the development of a

centrality akin to the one we propose here. Indeed, noting the lack of extension for the

eigenvector centrality to groups of nodes in their work, they explain that “[The eigenvec-

tor centrality] is virtually impossible to generalise along the lines presented earlier", that

is, lest one resorts to node-merging, a procedure not without problems (Everett and Bor-

gatti 1999). Now recall that the centrality presented here c(H) induces the eigenvector

centrality on singleton subgraphs comprising exactly one vertex H = {i}, a requirement

which, following Everett and Borgatti, is sufficient to call c(.) a proper extension of the

eigenvector centrality to groups of nodes. In fact, this observation is itself a special case

of a more general construction relating the centrality of simple paths with entries of the

projector onto the dominant eigenvector:

Proposition 1. Let G be a finite undirected graph with {λ ≡ λ1, λ2, · · · , λN } its spectrum.

For simplicity, we assume that the largest eigenvalue λ of G is unique. Let W : E �→ R+

be the weight function, sending edges of the graph to their weights. If G is not weighted

then W is identically 1. Let Pλ be the projector onto the dominant eigenvector of G and

η :=
∏N

i>1(1 − λi/λ). Then

η(Pλ)ij =
∑

p: i→j

λ−ℓ(p)W (p) c(p),

where the sum runs over all simple paths from i to j and the weight of a path is the product

of the weights of the edge it traverses.

Remark 3. When i ≡ j, the only simple path from i to itself is the length 0 path that

is stationary on i. The weight of the empty path is the empty product with value 1 and

therefore we recover the result of (Giscard and Wilson 2017b)

ηeig(i)2 = η (Pλ)ii = c({i}),

where eig(i) is the ith entry of the dominant eigenvector.
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Proof This relation follows from e.g. the path-sum formulation of the resolvent function

R(z) := (I − zA)−1 (Giscard et al. 2013). We have

R(z)ij =
∑

p: i→j

zℓ(p)W (p)
det(I − zAG\p)

det (I − zA)
.

In particular, the case i ≡ j gives the well-known adjugate formula for the inverse

R(z)ii = det
(

I − zAG\i

)

/ det(I − zA). Introducing the adjugate matrix Adj(I − zA)ij :=

det(I − zA)R(z)ij explicitly we have

Adj (I − zA)ij =
∑

p: i→j

zℓ(p)W (p) det
(

I − zAG\p

)

,

and the result follows on noting that limz→1/λ Adj (I − zA) = ηPλ.

We can go further to establish the centrality c(.) as an extension of the eigenvector

centrality to groups of nodes along broadly similar lines as those advocated by Everett and

Borgatti. To introduce the main result here, we need to present the (intuitive) definitions

of union and intersection of subgraphs.

Let H , H ′ be two subgraphs of G. We designate by H ∪ H ′ the subgraph of G whose

vertex set is the set-theoretic union of the vertex sets of H and H ′, V(H ∪ H ′) = V(H) ∪

V(H ′). Similarly H ∩ H ′ is the subgraph of G with vertex set V(H) ∩ V(H ′).

Proposition 2. Let G be a finite graph with no negative weights and {H1, · · ·Hn} be a set

of connected induced subgraphs of G. Then

c

(

n
⋃

i=1

Hi

)

=
∑

S⊆{1,··· ,n}

(−1)|S|−1c

(

⋂

s∈S

Hs

)

.

Proof This follows from the definition of c(H) as the fraction of all network flows

intercepted by H. A direct application of the inclusion-exclusion principle gives the

result.

An immediate corollary then explicitly shows how the centrality c(.) of any group of

nodes arises from the interplay between their eigenvector centralities

Corollary 1. Let G be a finite graph with no negative weights. Let VH := {v1, · · · , vn} ⊆ V

be a group of nodes on G. Then

c ({v1, · · · , vn}) = η

n
∑

i=1

eig(vi)
2 −

∑

i,j∈VH

f
(

{vi, vj}
)

+
∑

i,j,k∈VH

f
(

{vi, vj, vk}
)

− · · · ,

where f ({vi, vj, vk , · · · }) is the fraction of all network flows intercepted by all of vi, vj, vk , etc.

Wolfe’s dataset

We begin our concrete comparison with group-centralities on the Wolfe primate dataset

(UCINET IV Datasets 2018), a small real-world network which was studied by Everett

and Borgatti. This dataset provides the number of times monkeys of a group of 20 have

been spotted together next to a river by the anthropologist Linda Wolfe.
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Our results are shown in Table 1. Here the properties that c is always between 0 and

1 and that its values have actual meaning are clearly advantageous. For example, we can

now not only tell that the age group 10−13 is the most central, as Everett and Borgatti

noted, but we can concretely assert that 67% of all flows of interactions between mon-

keys involved at least one member of this group. By flow (or chain) of interactions, we

mean successions of interactions betweenmonkeys, including interactions thatmay occur

simultaneously. For example, we can have monkey 1 interact with 3, who then interacts

with 8; while concurrently 2 meets 4 etc.

Similarly, we note that almost 95% of all flows of interactions involved at least one

female, while this percentage dropped to 64% for males, in spite of male 3 being the most

central individual monkey in the entire group by all measures. Thus, according to c(H)

and contrary to all the group centralities reported here,4 females are quantitatively more

important in mediating social interactions than the males. Here, it may help to know that

the monkeys observed byWolfe were feral Rhesus macaques (Macaca mulatta), a species

where females stay in the group of their birth, providing its dominance rank structure,

while males must change group when reaching sexual maturity, around 4 years old. Fur-

thermore, during the mating season, females favour multiples interactions with different

males including low ranking ones (Lindburg 1971). Finally, females typically outnumber

males, sometimes by as much as 3 to 1. These observations suggest that females should

indeed account for a larger share of the all interactions between monkeys than the males.

Another point of importance for the comparison is the age group 7−9, which is ranked

higher than the age group 14−16 by c(H) while the group-centralities consistently yield

the opposite order. On this point, we observe that Rhesus macaques are peculiar in

that younger females have higher social ranks than their older peers (Hill and Okayasu

1996; Wall 1993). In the closely related Japanese macaques (Macaca fuscata), domi-

nance rank is known to be positively correlated with the frequency of social interactions

(Singh et al. 1996).

Yeast PPI network and protein complexes

In this section we study the PPI network of the yeast Saccharomyces cerevisiae, using

high quality data from (Hart et al. 2007), which provides a network comprising 5303

interactions between 1689 individual proteins. These proteins are known to belong to

Table 1 Comparison between several of Everett and Borgatti’s group centralities (Everett and

Borgatti 1999) and the centrality c(H). The centrality values for c(H) are given here in % as they give

the proportions of all successions of interactions between monkeys involving at least one member

of the group. The centralities c(H) were computed by the FlowFraction algorithm available on the

Matlab File Exchange (Giscard and Wilson 2017a)

Centralities of groups of monkeys in Wolfe’s dataset

Group Members c(H)in % Degree Average closeness Group

group centrality group centrality betweenness

Age 10−13 2 3 8 12 16 67% 11 15 43.5

Age 7−9 4 5 9 10 15 17 57% 5 13.7 0

Age 14−16 1 6 11 13 19 49% 8 18 2.84

Age 4−6 7 14 18 20 34% 5 20.5 0

Females 6 − 20 95% 4 6.4 0.5

Males 1 − 5 64% 10 16 24.34
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complexes, a curated list of which is provided by the Munich Information center on Pro-

tein Sequences (MIPS) (Güldener et al. 2006). The authors of (Hart et al. 2007) have

shown that some of the MIPS complexes could be recovered from a run of the MCL

clustering algorithm running on the network. Our goal here is twofold: i) to show that

the centrality c(.) can also be used to recover MIPS protein complexes, for which it

provides additional informations; and ii) that the degree group centrality fails to do so.

Here, we focus specifically on the degree group centrality as the degree centrality is

the vertex measure of importance which has seen the most success in biology, see e.g.

(Mukhtar and et al 2011).

Analysis

We analysed the PPI in three steps. Firstly, we found all edges (that is connected pairs

of vertices) connected triplets (triangles and paths on 3 vertices) and connected quadru-

plets of proteins on the network.5 Secondly, we calculated the centralities c(.) of these

objects. To present the third step of our analysis, we invite the reader to observe the dis-

tribution of centrality values, which we show at the top of Fig. 2 in the case of triplets.6

Clearly, high triplet centralities fall into separate plateau-like ensembles. Therefore, the

third and final step of our analysis is to gather the list of all proteins appearing in all

the triplets whose centrality values placed them in the same plateau. We then compare

these lists of proteins with the biological complexes found in curated databases (Pu et al.

2009). Remarkably, these lists of proteins correspond to actual biological complexes. We

summarise our observations as follows :

1) Plateaus, i.e. groups of triplets with similar centrality values, correspond to actual

protein complexes;

2) Conversely, all triplets belonging to an actual complex are in the same plateau, i.e.

they scored roughly the same in centrality values;

3) Consider a triplet t whose centrality value c(t) is in one of the top plateaus. Then all

three proteins forming t are part of the same biological complex.

4) Triplets with small centrality values, outside of plateaus, tend to belong to no

particular complex or several complexes at once (i.e. one protein in one complex, the

other two in another).

We emphasise that in our analysis the complexes are determined entirely from the

plateaus of centrality values. That these so-determined complexes correspond to actual

biological complexes demonstrates the quality of the analysis provided by the centrality

proposed here.

Mathematically, the fact that biological complexes lead to clustered plateau-like cen-

trality values for triplets means that the frequency with which proteins belonging to

these complexes are involved in successions of proteins reactions depends first and fore-

most on the complexes themselves. In other terms, the frequency of protein activation is

determined at the complex level.

Identified complexes

The dominant complex, here denoted Co1, comprises 30 proteins7 and is found in both

the MIPS database and in (Pu et al. 2009), where it is known as the mitochondrial small

ribosomal large subunit. Interestingly, Co1 is identical with the third largest complex
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Fig. 2 Distributions of triplet centralities. Top: normalised triplet centralities c(t)/maxt triplet (c(t)), bottom:

normalised degree group centrality g(t)/maxt triplet (g(t)) introduced in (Everett and Borgatti 1999)

recovered by the MCL algorithm running on the same dataset (Hart et al. 2007), with

the addition of the proteins ASF1 and MAM33, a nucleosome assembly factor and a

protein of the mitochondrial matrix involved in oxidative phosphorylation, respectively.

In the latter case, we note that several complexes involving the MAM33 and proteins of

mitochondrial small ribosomal large subunit have been proposed in experimental studies

(Yeast Resource Center 2018). Complex Co2 comprises 21 proteins.8 It includes the entire

complex C17 determined by the MCL method (Hart et al. 2007), together with 6 addi-

tional proteins all which are been proposed to form complexes (in particular the HIR and

Rad53p-Asf1p complexes) with one or more proteins of C17 in separate studies (Pu et al.

2009) as well as in the MIPS database. Complex Co3 comprises 64 proteins and overlaps

significantly with the nucleosomal protein and CID 14 and complexes of (Pu et al. 2009),
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the latter of which includes the Casein kinase II, RNA polymerase II and Cdc73/Paf1

complexes.9

An advantage of the classification method employed here is that, contrary to MCL, it

allows for overlapping complexes, i.e. proteins which functions in different complexes, as

is expected biologically. At the same time, a drawback is that small centrality values are

not segregated well enough to clearly distinguish clusters of values and hence complex

boundaries. At least three more complexes Co4, Co5 and Co6 could possibly be distin-

guished, all of which can be found in MIPS database, however these are less clear cut

than the first three complexes and so are left out from this work. Empirically, we found

that this problem could be somewhat reduced by looking at quadruplets, quintuplets

etc., but this comes at a great computational cost given the number of such objects. A

random sampling scheme may be able to bypass this difficulty.

In comparison, the distribution of degree group centrality shows no trace of the under-

lying protein complexes and reveals little more than the simple distribution of vertex

degrees. While we do not recommend the use of the centrality c(.) as a clustering tool

owing to its greater computational cost than algorithms such as MCL, we believe that its

performance in this domain bears witness to the sensitivity of the proposed centrality to

underlying network features. Conversely, the notion of group-centrality may be too coarse

to perceived such features in the data, at least in the case of PPI.

Conclusion

In this second work on the centrality c(.), we have rigorously established its meaning as a

fraction of network flows intercepted by any chosen ensembles of nodes. The centrality

c(.) not only induces the eigenvector centrality on vertices, but it is a proper extension of it

through an application of the inclusion-exclusion principle on network flows. Finally, we

have shown on two real-world networks that the centrality c(.) is more sensitive to critical

network features than existing group-centralities. In particular, the centrality of triplets of

proteins in the PPI network of the yeast was sufficient to distinguish protein complexes

found in curated databases of experimental results. We recall that in our previous study

(Giscard andWilson 2017b), the centrality c(.) already produced the best available model

for pathogen targeting in Arabidopsis thaliana, yielding a 25% improvement of the state-

of-the-art model of (Mukhtar and et al 2011). We hope that these results will spur further

research on the use of the centrality in biology.

Endnotes
1We refer to the area under the ROC curves for both the model based on the centrality

c(.) and the state of the art one. These are 0.97 and 0.73 respectively.
2But not necessarily totally multiplicative.
3G is finite and so are all its induced subgraphs.
4Everett and Borgatti also discuss normalisations of the group-centralities. In the case

of the degree group-centrality, the normalisation is defined to be the degree group

centrality divided by the number of nodes which do not belong to the group under

consideration. Normalisations tends to rank females ahead of males as c(H) does, but

they represent non-linear transformation of the original group-centralities, making their

interpretation more difficult.
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5While the subgraph centrality is defined on arbitrary subgraphs, including non-

connected ones, here we only consider only connected ensembles of proteins as these

may have biological activities.
6Edges and quadruplets give broadly similar distributions. While complexes Co1, Co2

and Co3 are just as markedly visible in quadruplet data as in triplet data, quadruplets do

lead to better segregation of complexes Co4, Co5 and Co6.
7 It comprises proteins ASF1, EHD3, FYV4, MAM33, MRP1, MRP4, MRP10, MRP13,

MRP21, MRP51, MRPS5, MRPS8, MRPS9, MRPS16, MRPS17, MRPS18, MRPS28,

MRPS35, NAM9, PET123, RSM7, RSM10, RSM18, RSM19, RSM22, RSM23, RSM24,

RSM25, RSM26 and RSM27.
8These are ASF1, CDC48, CKA1, HAT1, HAT2, HHF1, HHF2, HHT2, HIF1, HIR2,

PDS5, POB3, PSE1, PSH1, RAD53, RTG2, RTT106, SPT16, YDL156W, YIL070C and

YKU70.
9This complex is ASF1, CDC34, CDC48, CDC53, CDC73, CDC9, CHD1, CKA1,

CKA2, CKB1, CKB2, CTR9, DOA1, GRR1, HAT1, HAT2, HHF1, HHF2, HHT2, HIF1,

HIR1, HIR2, HOT1, HPC2, HTA1, KAP114, LEO1, MET30, MKT1, MRF1, NAP1, NPL4,

ORC2, ORC3, ORC4, ORC5, PAF1, PDS5, PEX19, POB3, POL12, PSE1, PSH1, RAD27,

RAD53, RPS1B, RRP7, RTF1, RTG2, RTT101, RTT106, SHP1, SKP1, SPO12, SPT16,

TOP1, UFD1, ULP1, UTP22, YDL156W, YDR049W, YGR017W, YKU70 and YKU80
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