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Abstract

Optimization of the arrangement of fuel assemblies and burnable poisons when reloading
pressurized water reactors has, in the past, been performed with many different algorithms
in an attempt to make reactors more economic and fuel efficient. The use of the tabu search
algorithm in tackling reload core design problems is investigated further here after limited,
but promising, previous investigations. The performance of the tabu search implementa-
tion developed was compared with established genetic algorithm and simulated annealing
optimization routines. Tabu search outperformed these existing programs for a number of
different objective functions on two different representative core geometries.
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1. Introduction1

The design of pressurized water reactors (PWR) reload cores is a formidable combina-2

torial optimization problem. The designer’s task is to find the configuration of fresh and3

partially burnt fuel and burnable poisons (BPs) that optimizes the performance of the reactor4

over the subsequent cycle, while ensuring that various operational constraints are satisfied.5

Such problems have a number of different possible objectives, constraints and many local6

optima (Galperin, 1995).7

Over the years this problem has been tackled in many different ways. Naft and Sesonske8

(1972) sought to minimize the ratio of peak-to-average power by direct search using heuristic9

shuffling rules. Federowicz and Stover (1973) also tried to minimize power peaking by suc-10

cessive application of integer linear programming. Ahn and Levine (1985) used a gradient11

projection method and linear programming in a series of stepwise optimization calculations12

to minimize the cost of the reload core. Hobson and Turinsky (1986) coupled a first-order13

accurate perturbation theory model to a Monte Carlo integer programming algorithm to14
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search for loading patterns (LPs) that maximized the energy production over a cycle, sub-15

ject to constraints on power peaking and fuel burn-up. Kim et al. (1987) developed a16

two-stage procedure for maximizing cycle length, subject to power peaking constraints, by17

decoupling the fuel and BP placement problems. Stillman et al. (1989) used the backward18

diffusion calculation (Chao et al., 1986) and successive linear programming to determine19

theoretically optimal fuel and two-dimensional (2D) power distributions for a PWR, min-20

imizing fissile material and BP inventories. Kropaczek and Turinsky (1991) combined the21

simulated annealing (SA) stochastic optimization technique with a core physics model based22

on second-order accurate generalized perturbation theory (GPT) to find near-optimal LPs23

for a variety of different objectives and constraints.24

Since the pioneering work of Kropaczek and Turinsky (1991), other researchers, including25

Mahlers (1994), S̆muc et al. (1994) and Stevens et al. (1995), have developed SA variants to26

optimize PWR LPs or applied other stochastic/heuristic optimization methods to this prob-27

lem and/or the closely related boiling water reactor (BWR) LP optimization problem. These28

other methods have included: genetic algorithms (GAs) (Poon and Parks, 1993, DeChaine29

and Feltus, 1995, Chapot et al., 1999, François and López, 1999, Ortiz and Requena, 2004,30

Mart́ın-del-Campo et al., 2004); estimation of distribution algorithms (Jiang et al., 2006);31

ant colony optimization (De Lima et al., 2008, Esquivel-Estrada et al., 2011, Wang and Lin,32

2009, Lin and Lin, 2012); particle swarm optimization (Alvarenga de Moura et al., 2009,33

Khoshahval et al., 2010, Liu and Cai, 2012); and harmony search (Poursalehi et al., 2013).34

A couple of studies have previously investigated the performance of tabu search (TS)35

on PWR reload core design problems (Lin et al., 1998, Ben Hmaida et al., 1999). These36

both considered the problem of minimizing the power peaking factor, identifying small im-37

provements in performance compared to a GA implementation. TS implementations have38

also been applied to various BWR applications: fuel lattice design (François et al., 2003),39

reload core design (Castillo et al., 2004), control rod design (Castillo et al., 2005) and a40

combination of fuel loading and control rod pattern optimization (Castillo et al., 2007).41

This paper investigates the performance of a TS implementation on representative PWR42

reload core design problems, seeking optimal values for the parameters that control the43

algorithm for a range of different objective functions, and then comparing the performance44

of the resulting TS implementation with that of established SA and GA implementations.45

2. Tabu search46

Originally developed by (Glover and McMillan, 1986), TS is a meta-heuristic algorithm47

based on local (or neighborhood) search which has found wide application (Glover and48

Laguna, 1997), particularly for combinatorial optimization problems. Meta-heuristic algo-49

rithms iteratively try to improve the solution but cannot guarantee that the optimum is ever50

found.51

TS evaluates a set of solutions which are, by some definition, next to the current solution52

and moves to the best of these solutions, even if the objective function value deteriorates as53

a result of the move. A short-term memory (or tabu list) is used to store the most recently54
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visited solutions, and these are not allowed to be revisited for a number of iterations equal55

to the tabu tenure. This feature allows the search to escape from local optima.56

Intensification and diversification are two further strategies employed in many TS imple-57

mentations when the progress of the search slows. These rely on medium-term and long-term58

memories. The medium-term memory (MTM) stores a selection of the best solutions visited59

in the search. The long-term memory (LTM) records information on how frequently different60

regions of the search space have been visited.61

The aim of intensification is to more thoroughly explore the search space close to the62

locations of the best solutions found. When intensification is performed, the search is63

returned to a solution determined by those in the MTM and search parameters can be64

adjusted.65

Diversification aims to visit insufficiently explored regions of the search space. A random66

solution in an infrequently visited region (identified using the LTM) is selected and the67

search is restarted from there. A rudimentary diversification strategy does not use a LTM68

and instead just restarts from random locations in the search space.69

3. PWR reload core design70

A typical PWR core contains 193 fuel assemblies arranged with quarter-core (reflective71

or rotational) symmetry. At each refueling between one third and one quarter of these72

may be replaced. It is common practice for fresh fuel assemblies to carry BPs. It is also73

usual to rearrange old fuel in order to improve the characteristics of the new core. This74

shuffling can entail the exchange of corresponding assemblies between core quadrants, which75

is equivalent to changing the assembly ‘orientations’, or the exchange of different assemblies,76

which changes their locations and possibly their orientations also. Examples of each exchange77

are shown in Fig. 1.78

Fig. 1. Typical fuel assembly exchanges.

Thus, a candidate LP of predetermined symmetry must specify:79
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• the fuel assembly to be loaded in each core location,80

• the BP loading with each fresh fuel assembly, and81

• the orientation of each burnt assembly.82

One interesting point to emerge from a review of past work on PWR reload core design83

is the diversity in objective functions chosen for optimization. These have included:84

1. Maximization of end-of-cycle (EOC) reactivity85

2. Maximization of discharge burn-up86

3. Minimization of feed enrichment87

4. Minimization of power peaking88

5. Minimization of the fresh fuel inventory89

An effective LP optimization method should ideally work well for any objective function90

chosen by the user, rather than enforce a choice of objective function on the user.91

4. Algorithm implementation92

4.1. Framework93

The TS implementation was developed within the optimization framework provided in94

the Fuel Optimization for Reloads: Multiple Objectives by Simulated Annealing for PWRs95

(FORMOSA-P) nuclear fuel management optimization code (Kropaczek and Turinsky, 1991,96

Kropaczek et al., 1994, Maldonado et al., 1995). The original version of FORMOSA-P97

combined SA-based optimization with a 2D (radial) nodal expansion method simulator98

coupled with an assembly power response GPT LP evaluator. A GA implementation was99

subsequently added to FORMOSA-P (Poon and Parks, 1993, Parks, 1996).100

Within FORMOSA-P each candidate LP is represented by three 2D arrays, correspond-101

ing to the physical layout of the fuel assemblies (with identifiers indicating unique fresh or102

burnt fuel designs), their BP loadings (with identifiers indicating individual options from103

the range available) and their orientations, respectively, as shown in Fig. 2.104

Fig. 2. A representation of a loading pattern (with rotational quarter-core symmetry).

For combinatorial optimization problems such as PWR reload core design, application-105

specific crossover operators are required in GA implementations to guarantee that valid106
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offspring are produced; in this case, to ensure that the fuel assembly inventory is maintained.107

The FORMOSA-P GA implementation uses Poon and Parks’ heuristic tie-breaking crossover108

(HTBX) operator (Poon and Parks, 1993). The HTBX maps the parent fuel assembly arrays109

to reactivity-ranked arrays based on the assemblies’ beginning-of-cycle (BOC) reactivities.110

It then combines randomly selected complementary parts of these arrays through a ‘cut111

and paste’ operation and uses a simple tie-breaking algorithm to produce valid offspring112

reactivity-ranked arrays. Finally, the assembly-ranking mapping is reversed to produce the113

offspring assembly LPs. The BP loadings and assembly orientations are all inherited from114

one or other parent. Thus, the BOC reactivity distribution of an offspring LP resembles,115

but is not necessarily identical to, parts of both parents. The performance comparisons116

presented in Sections 6.2 and 6.3 are, of course, specific to this GA implementation.117

The mutation operator from the FORMOSA-P GA implementation is used extensively118

in our TS implementation. The mutation operator performs a binary exchange of fuel119

assemblies and randomly changes the BP loading and orientation of the two fuel assemblies120

from within the ranges of values for these parameters allowed by the specified core symmetry121

and geometry and fuel and BP inventories and options.122

The objective functions and constraints are handled in the same way as in FORMOSA-P123

and the reactor core analysis is also performed using GPT (Kropaczek et al., 1994, Maldon-124

ado et al., 1995). Four objective functions are available:125

1. Maximization of the EOC soluble boron concentration (equivalent to maximizing the126

EOC reactivity)127

2. Minimization of the radial power peaking128

3. Maximization of the discharge burn-up129

4. Minimization of the enrichment of fresh fuel130

Within FORMOSA-P the calculation of each of the objectives is of the form:131

fpen = (−)fraw + c− cref (1)

where fraw is the raw objective function (suitably scaled), the factor of −1 [the (−) term]132

is included if the original objective function is to be maximized, c is a term quantifying133

the extent of constraint violation for the current solution (candidate LP), cref is a term134

quantifying the extent of constraint violation for the original, reference LP, and fpen is thus135

a suitably penalized objective function to be minimized.136

4.2. Tabu search implementation137

In our TS implementation, before the search begins, a random starting LP is found by138

taking the user-specified reference LP and then mutating it 1000 times. The resulting LP is139

then evaluated, and if it is grossly infeasible (as defined in FORMOSA-P), then the mutation140

process is repeated until a suitable (not grossly infeasible) starting LP is found. An LP is141

defined as grossly infeasible if it violates one or more of a number of possible user-defined142

constraints, such as maximum acceptable radial power peaking, maximum acceptable feed143

enrichment, maximum acceptable soluble boron concentration etc. This search initialization144
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feature means that the starting LP for individual optimization runs depends on the random145

number generator seed specified, and is helpful when conducting performance comparisons146

between different optimization strategies. It can easily be suppressed if the user wants to147

run an individual optimization using the reference LP as the starting LP.148

A basic TS local search iteration proceeds as follows:149

1. A neighbor is generated by mutating the current LP once. This neighbor is then150

evaluated. If it is grossly infeasible or classed as tabu (by comparison with LPs in the151

tabu list), it is discarded; otherwise it is stored.152

2. This process is repeated until the desired neighborhood size (number of stored LPs)153

has been generated.154

3. The best of these neighbors is selected and replaces the current LP. This LP is added155

to the tabu list. If it meets the criteria for being added to the MTM, it is also added156

to this.157

4. If the criteria for diversification or intensification are not met, then the process repeats,158

selecting neighbors of this new LP.159

This process is terminated when a maximum number of LPs have been evaluated.160

The tabu list is an array of the most recently selected LPs, with the number of elements161

equal to the tabu tenure. When a new LP is selected, it is added to the tabu list, and, if162

the list is full, another LP is removed on a first-in first-out basis.163

The MTM records a fixed number of the best LPs visited, along with their objective164

function values. When a new LP is selected, its objective function value (fpen) is compared165

with those of the LPs in the MTM. If it is better than any of the existing MTM LPs, it is166

added and the worst LP (that with the highest fpen value) is removed from the MTM.167

A counter is incremented if a TS local search iteration does not result in the identification168

of a new best LP and reset to zero when a new best LP is found. Diversification takes place169

when this counter reaches a user-specified value. When the search is diversified, the current170

LP is mutated 500 times in order to create a random new LP to search from. The search is171

then restarted from this LP.172

Initially intensification was also designed to take place when the counter of the number173

of consecutive non-improving iterations reached a user-specified value, a different value to174

that used for diversification. At intensification the neighborhood size was increased by a175

factor and the search returned to a randomly selected LP from the MTM. The neighborhood176

size is reset to its initial value at the next diversification.177

This implementation requires a number of parameters to be chosen by the user:178

• The neighborhood size179

• The tabu list length180

• The number of consecutive non-improving iterations when diversification is performed181

• The number of consecutive non-improving iterations when intensification is performed182

• The MTM size183

• The factor by which the neighborhood size is increased during intensification184

6



Optimal values for these parameters were investigated. The results of these investigations185

can be found in Section 6.1.186

A different intensification timing method was also implemented and tested, for reasons187

that are explained in Section 6.1. This consisted of performing one intensification stage188

at a specified iteration number in the search. This iteration number, of course, represents189

another parameter to be specified by the user.190

5. Testing protocol191

As explained in the previous section, our TS implementation has stochastic elements, as192

do the methods with which it will be compared. The outcomes of individual runs of stochas-193

tic optimization methods depend on the random number generator seed specified. Therefore194

to compare the performance of different stochastic optimization methods or different config-195

urations of the same stochastic optimization method performance must be measured across196

a number of runs (in which only the random number generator seed is varied) to draw197

meaningful conclusions.198

Figure 3 shows how the mean and standard deviation over a number of runs of the199

objective function values of the best LP found after 50 000 objective function evaluations200

varies for one particular implementation of our TS algorithm as the number of runs increases.201

This test was repeated with a number of different set-ups (algorithm configurations and202

objective function choices) and similar results were seen. Based on these results, a sample203

size of 50 runs was chosen as providing adequately converged measures of the mean and204

standard deviation of the objective function to allow the comparison of optimization methods205

and configurations.206

6. Results and discussion207

As described in Sections 1 and 3, a number of different methods have been used to opti-208

mize PWR LPs with respect to a number of different objective functions. The FORMOSA-P209

code offers a range of objective function options and a choice of established SA and GA im-210

plementations. In fact, three SA implementations are available: SA1 – ‘global’ SA search;211

SA2 – ‘local’ SA search; SA3 ‘traditional’ SA search.212

Two test problems were constructed. The first sought optimal LPs for a 3-loop West-213

inghouse PWR with eighth-core symmetry. The second sought optimal LPs for a 4-loop214

Westinghouse PWR with only quarter-core symmetry. The reference LPs for both problems215

are shown schematically in Fig. 4. The second problem has a much larger search space, due216

both to the larger core size and the lower degree of symmetry specified.217

Once a basic implementation of the TS algorithm had been developed, the effects of218

varying a number of the algorithm’s control parameters were investigated in order to find219

an optimal set of parameters for Problem 1. The results of these experiments are presented220

in Section 6.1.221

The performance of the TS algorithm with this optimal set of parameters was then222

compared to that of the GA and SA implementations in FORMOSA-P for this problem.223

The results of this investigation are presented and discussed in Section 6.2.224
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Fig. 4. Fuel maps of the reference LPs for the two problems considered.

The performance of the same TS algorithm configuration was then compared with the225

FORMOSA-P algorithms for Problem 2. The results of this investigation are summarized226

in Section 6.3.227

These tests were conducted using all four of the objective function options available in228

FORMOSA-P:229

1. Maximization of the EOC soluble boron concentration230

2. Minimization of the radial power peaking231

3. Maximization of the discharge burn-up232

4. Minimization of the fresh fuel enrichment233

6.1. Parameter identification234

6.1.1. Neighborhood size235

In this experiment intensification and diversification strategies were not used and the236

tabu list length was set to 10. As discussed in Section 6.1.3, subsequent testing showed237

that neither intensification nor diversification have a significant effect on the performance of238

the TS implementation. If this had not been the case, then it would, of course, have been239

straightforward to conduct an iterative investigation in which the neighborhood size was240

optimized for a TS implementation without intensification and diversification, next those241

strategies were optimized for that neighborhood size, and then the neighborhood size was242
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optimized for the implementation with ‘optimal’ intensification and diversification strategies,243

and so on recursively until convergence in the parameter settings was achieved.244

For samples of 50 runs, each 50 000 objective function evaluations long, the mean and245

standard deviation of the objective function value were compared for various neighborhood246

sizes. Figure 5 shows the results of this experiment for objective function 2 (minimization247

of radial power peaking). The performance improves (lower mean and lower standard de-248

viation) for increasing neighborhood size up to 9, and deteriorates beyond 15. Between 9249

and 15 the mean improves (reduces) but there is a small increase in variability. This in-250

crease in variability was deemed acceptable and a value of 15 was therefore chosen as the251

neighborhood size for this objective.252
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Fig. 5. Effect of neighborhood size (Objective 2).

This approach was repeated for the other three objective functions. The optimal values253

of the neighborhood size were found to be different for the four objective functions, as254

summarized in Table 1.255

Although this investigation showed that the optimal value of the neighborhood size varied256

for different objective function choices, the tests also showed that algorithm performance257

was reasonably robust for choices of this parameter near the optimal value. For subsequent258

tests, it was therefore decided to test the performance of the algorithm for a single value of259

neighborhood size which gives reasonably good performance for all four objective functions.260
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Table 1. Best neighborhood size for each objective function on Problem 1.

Objective Best neighborhood size

1 9
2 15
3 19
4 37

The value judged to be best for this was 15. Using a single value for this parameter, rather261

than an objective-specific one, has the advantage of making the algorithm easier to use “out262

of the box”.263

6.1.2. Tabu list length264

To determine an appropriate tabu list length, and hence tabu tenure, 50 runs of 50 000265

objective function evaluations were performed for each objective with a number of different266

tabu list lengths. The same sets of random number generator seeds were used in each267

case so that runs for a given seed would be identical with the different tabu tenures unless268

cycling (that is returning to recently visited solutions) occurred. Cycling is detrimental to269

performance as it wastes search time. It was found that in almost all cases a tabu tenure of270

10 was sufficient to prevent cycling and therefore this value was chosen. Values less than 10271

produced more instances of cycling.272

6.1.3. Intensification and diversification parameters273

Intensification and diversification were investigated with a range of different control pa-274

rameters. However, neither strategy was found to significantly improve the performance of275

the TS implementation. Intensification was found to be most effective when applied very276

close to the end of the search, and thus a different implementation was tested where inten-277

sification occurs at a fixed iteration number, near the end of the search. This was found278

to produce an improvement in performance, but since the length of the search is often not279

predetermined, it was decided that this strategy should not be used. As such, in the final280

implementation created, neither intensification nor diversification are used.281

6.2. Performance comparison for Problem 1282

A TS implementation using the best neighborhood size for each objective (TS), as given283

in Table 1, and an implementation using a neighborhood size of 15 (TS15) for all objectives,284

for the reasons discussed in Section 6.1.1, were considered. These were compared to two of285

the SA implementations (SA1 and SA3) and the GA implementation in FORMOSA-P.286

The FORMOSA-P algorithms have parameter values, including the maximum number287

of objective function evaluations in a run, that are automatically determined based on the288

size of the problem under consideration, as measured by the number of individual LP per-289

turbations possible. Therefore to compare the performance of the algorithms the mean and290

standard deviation of the best objective function values found after each objective function291
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evaluation in 50 runs of each algorithm were calculated. When the mean objective function292

values are plotted, see Fig. 6, it is possible to determine which algorithm is performing best293

at any point in the search.294

The results in Fig. 6 clearly show that TS performs best on average throughout the295

duration of the search for all four objective functions on this problem. It is also clear that296

TS reaches good solutions much faster than the other algorithms as the average objective297

function reduces much faster initially before leveling off.298

It is important to also consider the standard deviation of the results. In practice, the299

optimization would not be repeated many multiple times. Therefore it is important that300

optimizer performance is reasonably consistent (i.e. that the standard deviation of the results301

is low). The error bars in Fig. 6 show how the standard deviation of the best objective302

function value found varies through the search for all of the algorithms tested. It is clear303

that the standard deviation of the results is lowest throughout the search for TS.304

As one would expect, TS performance is best for each objective for the optimal neighbor-305

hood size parameter (the TS lines). Figure 6 shows that TS performance for a neighborhood306

size of 15 (the TS 15 lines) is equally good for Objective 1, and although not quite as good307

for Objectives 3 and 4, it is nevertheless clearly better than that achieved on these prob-308

lems by the FORMOSA-P SA and GA implementations. There is no TS 15 line shown for309

Objective 2 because the optimal neighborhood size is 15 in this case.310

6.3. Performance comparison for Problem 2311

The best TS set-ups found for Problem 1 were used on the much larger (in terms of search312

space size) Problem 2. It is to be expected that the optimal TS parameters for Problem 2313

will be different from those for Problem 1, but it is interesting to see how well TS performs314

on Problem 2 using the optimal parameters for Problem 1.315

As previously mentioned, the FORMOSA-P code automatically changes the SA and316

GA control parameters such that they are appropriate for the size of the problem being317

considered, and thus the parameters they use on Problem 2 are different to those used on318

Problem 1.319

Figure 7 shows the performance of the algorithms on Problem 2. The TS parameters320

are not optimized for this problem yet it is clear that TS nevertheless outperforms the two321

versions of SA and the GA implementation in FORMOSA-P by some margin.322

For Objective 1 TS with a neighborhood size of 15 now clearly outperforms TS with323

an optimal (for Problem 1) neighborhood size of 9. For Objectives 3 and 4 TS with the324

optimal (for Problem 1) neighborhood size (19 for Objective 3, 37 for Objective 4) outper-325

forms TS with a neighborhood size of 15 again. These results imply that while the optimal326

neighborhood size may well depend on the objective function, it is not obviously a strong327

function of the problem size. The results for Objective 1 for the two problems imply that a328

neighborhood size of 15 may overall be a better choice.329

The ability of TS to outperform a GA on PWR reload core design optimization problems330

observed here is consistent with a similar observation made recently in the context of BWR331

reload core design by François et al. (2013).332
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Fig. 6. Comparison of mean objective function values with different optimization algorithms
and objective functions for Problem 1, error bars represent one standard deviation.
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Fig. 7. Comparison of mean objective function values with different optimization algorithms
and objective functions for Problem 2, error bars represent one standard deviation.

14



7. Conclusions333

A TS algorithm for tackling PWR reload core design problems has been implemented334

within the optimization framework of the FORMOSA-P code and tested on a couple of335

representative PWR core geometries for four different commonly used objective functions.336

Testing revealed that the diversification and intensification strategies implemented within337

the TS algorithm provided negligible performance benefit. The resulting TS implementation338

therefore has only two control parameters to be determined: the tabu list length and the339

neighborhood size. Tests showed that a tabu list length of 10 worked well for all four340

objective functions, but that the optimal neighborhood size did depend on the objective341

function under consideration.342

The performance of the resulting TS implementation was compared with that of the343

established SA and GA implementations in FORMOSA-P. The TS implementation was344

found to perform best for both core geometries and all four objective functions. The TS345

implementation performed better than SA and GA even when using the same neighborhood346

size for each objective function. This implies that the performance of this TS implementation347

is reasonably robust to its parameter settings. The ability to perform well “out of the box”348

is an attractive one for optimizers, as there may not always be the time or expertise available349

to tune them to the problem at hand.350

These findings indicate that our TS implementation is a promising method for solv-351

ing PWR reload core design problems and worthy of further investigation. Further work352

that could usefully be undertaken includes the investigation of the method’s performance353

on other representative problems, investigating in particular the question of how sensitive354

performance is to the choice of neighborhood size for different core geometries and objec-355

tive functions. Performance comparisons with other state-of-the-art stochastic optimization356

methods, such as ant colony optimization and particle swarm optimization, would also be357

instructive.358
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