714 research outputs found

    Cold war polarization, delegated party authority, and diminishing exilic options

    Get PDF
    Several thousand Indonesians were in China on 1 October 1965, when six senior military officers were killed in Jakarta by the Thirtieth of September Movement (G30S) in a putsch blamed upon the Indonesian Communist Party (PKI). The event changed the lives of Indonesians—in China and in their homeland—irrevocably. This article examines the impact of bilateral state relations upon the fate of those Indonesian political exiles in China and assesses the role of the Beijing-based leadership of the PKI (known as the Delegation of the Central Committee) as it attempted to manage the party in exile. Oral and written accounts by individual exiles are drawn upon to illustrate the broader community experience and trauma of exile, which was particularly harsh during the Cultural Revolution. The fate of the Indonesian exiles during this tempestuous period of Chinese politics was exacerbated by the failure of the delegation and, ultimately, by the exiles’ eventual rejection by the Chinese state

    Gravitational uncertainties from dimension-six operators on supersymmetric GUT predictions

    Get PDF
    We consider the gravity induced dimension six terms in addition to the dimension five terms in the SUSY GUT Lagrangian and find that the prediction for αs\alpha_s may be washed out completely in supersymmetric grand unified theories unless the triplet higgs mass is smaller than 7×1016 7\times 10^{16} GeV.Comment: 7 pages,latex.Title of original version changed,text added and a figure has been added.Figure is available on request.To appear as a brief Report in Phys.Rev.

    Drum vortons in high density QCD

    Get PDF
    Recently it was shown that high density QCD supports of number of topological defects. In particular, there are U(1)_Y strings that arise due to K^0 condensation that occurs when the strange quark mass is relatively large. The unique feature of these strings is that they possess a nonzero K^+ condensate that is trapped on the core. In the following we will show that these strings (with nontrivial core structure) can form closed loops with conserved charge and currents trapped on the string worldsheet. The presence of conserved charges allows these topological defects, called vortons, to carry angular momentum, which makes them classically stable objects. We also give arguments demonstrating that vortons carry angular momentum very efficiently (in terms of energy per unit angular momentum) such that they might be the important degrees of freedom in the cores of neutron stars.Comment: 11 pages, accepted for publication in Physical Review

    Quantum teleportation of entangled coherent states

    Get PDF
    We propose a simple scheme for the quantum teleportation of both bipartite and multipartite entangled coherent states with the successful probability 1/2. The scheme is based on only linear optical devices such as beam splitters and phase shifters, and two-mode photon number measurements. The quantum channels described by multipartite maximally entangled coherent states are readily made by the beam splitters and phase shifters.Comment: 4 pages, no figure

    Vortex Rings in two Component Bose-Einstein Condensates

    Full text link
    We study the structure of the vortex core in two-component Bose-Einstein condensates. We demonstrate that the order parameter may not vanish and the symmetry may not be restored in the core of the vortex. In this case such vortices can form vortex rings known as vortons in particle physics literature. In contrast with well-studied superfluid 4He^4He, where similar vortex rings can be stable due to Magnus force only if they move, the vortex rings in two-component BECs can be stable even if they are at rest. This beautiful effect was first discussed by Witten in the cosmic string context, where it was shown that the stabilization occurs due to condensation of the second component of the field in the vortex core. This second condensate trapped in the core may carry a current along the vortex ring counteracting the effect of string tension that causes the loop to shrink. We speculate that such vortons may have been already observed in the laboratory. We also speculate that the experimental study of topological structures in BECs can provide a unique opportunity to study cosmology and astrophysics by doing laboratory experiments.Comment: 21 pages, 2 figure

    Anatomy of avian rictal bristles in Caprimulgiformes reveals reduced tactile function in open-habitat, partially diurnal foraging species

    Get PDF
    Avian rictal bristles are present in many species of birds, especially in nocturnal species. Rictal bristles occur along the upper beak and are morphologically similar to mammalian whiskers. Mammalian whiskers are important tactile sensors, guiding locomotion, foraging and social interactions, and have a well‐characterised anatomy. However, it is not yet known whether avian rictal bristles have a sensory function, and their morphology, anatomy and function have also not been described in many species. Our study compares bristle morphology, follicle anatomy and their association with foraging traits, across 12 Caprimulgiform species. Rictal bristle morphology and follicle anatomy were diverse across the 12 species. Nine of the 12 species had mechanoreceptors around their bristle follicles; however, there was large variation in their musculature, mechanoreceptor numbers and bristle morphology. Overall, species with short, thin, branching bristles that lacked mechanoreceptors tended to forage pre‐dusk in open habitats, whereas species with mechanoreceptors around their bristle follicle tended to forage at night and in more closed habitats. We suggest that rictal bristles are likely to be tactile in many species and may aid in navigation, foraging and collision avoidance; however, identifying rictal bristle function is challenging and demands further investigation in many species

    Modeling magnetospheric fields in the Jupiter system

    Full text link
    The various processes which generate magnetic fields within the Jupiter system are exemplary for a large class of similar processes occurring at other planets in the solar system, but also around extrasolar planets. Jupiter's large internal dynamo magnetic field generates a gigantic magnetosphere, which is strongly rotational driven and possesses large plasma sources located deeply within the magnetosphere. The combination of the latter two effects is the primary reason for Jupiter's main auroral ovals. Jupiter's moon Ganymede is the only known moon with an intrinsic dynamo magnetic field, which generates a mini-magnetosphere located within Jupiter's larger magnetosphere including two auroral ovals. Ganymede's magnetosphere is qualitatively different compared to the one from Jupiter. It possesses no bow shock but develops Alfv\'en wings similar to most of the extrasolar planets which orbit their host stars within 0.1 AU. New numerical models of Jupiter's and Ganymede's magnetospheres presented here provide quantitative insight into the processes that maintain these magnetospheres. Jupiter's magnetospheric field is approximately time-periodic at the locations of Jupiter's moons and induces secondary magnetic fields in electrically conductive layers such as subsurface oceans. In the case of Ganymede, these secondary magnetic fields influence the oscillation of the location of its auroral ovals. Based on dedicated Hubble Space Telescope observations, an analysis of the amplitudes of the auroral oscillations provides evidence that Ganymede harbors a subsurface ocean. Callisto in contrast does not possess a mini-magnetosphere, but still shows a perturbed magnetic field environment. Callisto's ionosphere and atmospheric UV emission is different compared to the other Galilean satellites as it is primarily been generated by solar photons compared to magnetospheric electrons.Comment: Chapter for Book: Planetary Magnetis

    Effects of Pore Walls and Randomness on Phase Transitions in Porous Media

    Full text link
    We study spin models within the mean field approximation to elucidate the topology of the phase diagrams of systems modeling the liquid-vapor transition and the separation of He3^3--He4^4 mixtures in periodic porous media. These topologies are found to be identical to those of the corresponding random field and random anisotropy spin systems with a bimodal distribution of the randomness. Our results suggest that the presence of walls (periodic or otherwise) are a key factor determining the nature of the phase diagram in porous media.Comment: REVTeX, 11 eps figures, to appear in Phys. Rev.

    Discrete symmetries, invisible axion and lepton number symmetry in an economic 3-3-1 model

    Full text link
    We show that Peccei-Quinn and lepton number symmetries can be a natural outcome in a 3-3-1 model with right-handed neutrinos after imposing a Z_11 x Z_2 symmetry. This symmetry is suitably accommodated in this model when we augmented its spectrum by including merely one singlet scalar field. We work out the breaking of the Peccei-Quinn symmetry, yielding the axion, and study the phenomenological consequences. The main result of this work is that the solution to the strong CP problem can be implemented in a natural way, implying an invisible axion phenomenologically unconstrained, free of domain wall formation and constituting a good candidate for the cold dark matter.Comment: 17 pages, Revtex

    Magnetoelectric ordering of BiFeO3 from the perspective of crystal chemistry

    Full text link
    In this paper we examine the role of crystal chemistry factors in creating conditions for formation of magnetoelectric ordering in BiFeO3. It is generally accepted that the main reason of the ferroelectric distortion in BiFeO3 is concerned with a stereochemical activity of the Bi lone pair. However, the lone pair is stereochemically active in the paraelectric orthorhombic beta-phase as well. We demonstrate that a crucial role in emerging of phase transitions of the metal-insulator, paraelectric-ferroelectric and magnetic disorder-order types belongs to the change of the degree of the lone pair stereochemical activity - its consecutive increase with the temperature decrease. Using the structural data, we calculated the sign and strength of magnetic couplings in BiFeO3 in the range from 945 C down to 25 C and found the couplings, which undergo the antiferromagnetic-ferromagnetic transition with the temperature decrease and give rise to the antiferromagnetic ordering and its delay in regard to temperature, as compared to the ferroelectric ordering. We discuss the reasons of emerging of the spatially modulated spin structure and its suppression by doping with La3+.Comment: 18 pages, 5 figures, 3 table
    • 

    corecore